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ABSTRACT

Whole genome doubling (WGD), a frequent occurrence during the evolution of the an-
giopsperms, complicates ancestral gene order reconstruction due to the multiplicity of so-
lutions to the genome halving process. Using the genome of a related species (the outgroup)
to guide the halving of a WGD descendant attenuates this problem. We investigate a battery
of techniques for further improvement, including an unbiased version of the guided genome
halving algorithm, reference to two related genomes instead of only one to guide the re-
construction, use of draft genome sequences in contig form only, incorporation of incomplete
sets of homology correspondences among the genomes, and addition of large numbers of
‘‘singleton’’ correspondences. We make use of genomic distance, breakpoint reuse rate,
dispersion of sets of alternate solutions, and other means to evaluate these techniques, and
employ the papaya (Carica papaya) and grapevine (Vitis vinifera) genomes to reconstruct the
pre-WGD ancestor of poplar (Populus trichocarpa), as well as an early rosid ancestor. A
significant result is that the papaya genome has rearranged at a greater rate from the rosid
ancestor than phylogenetic relationships would predict.

Key words: gene order, genome halving, genome rearrangement, Populus trichocarpa, whole

genome duplication.

1. INTRODUCTION

The reconstruction of the gene order in ancestral genomes requires that we make a number of

choices, among the data on which to base the reconstruction, in the algorithm to use, and in how to

evaluate the result. In this article, we illustrate an approach to making these choices in the reconstruction of

the ancestor of the poplar Populus trichocarpa genome. This species has undergone whole genome dupli-

cation followed by extensive chromosomal rearrangement, and is one of four angiosperm genomes, along

with those of Carica papaya (papaya), Vitis vinifera (grapevine), and Arabidopsis thaliana, whose sequences

have been published to date (Fig. 1).

We have been developing methods to incorporate descendants of whole genome doubling into

phylogenies of species that have been unaffected by the doubling event. The basic tool in analyzing
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descendants of whole genome doubling is the halving algorithm (El-Mabrouk and Sankoff, 2003). To

overcome the propensity of the genome halving procedure to produce numerous, widely disparate solu-

tions, we ‘‘guide’’ the execution of this procedure with information from genomes of related species (Zheng

et al., 2006, 2008a,b, 2009; Sankoff et al., 2009), which we call outgroups. This, ipso facto, integrates the

whole genome doubling descendant into the phylogeny of the related species.

Issues pertaining to data include the following:

Homology sets. Can we use defective sets of homologs, i.e., which have only one copy in the duplicated genome or

are missing the ortholog completely in the guide genome?

Singletons. Should we purge singletons from the data, i.e., sets of homologous markers who have no homologous

adjacent markers in common in the either the duplicated genome or the outgroup?

Contigs. Can we use guide genomes that are not fully assembled, but are available only as sets of hundreds or

thousands of contigs?

Another choice to be made during reconstruction has to do with the guided halving algorithm itself. The

original genome halving problem, with no reference to outgroup genomes, can be solved in time linear in

the number of markers (El-Mabrouk and Sankoff, 2003). We can introduce information from an outgroup

in order to guide this solution, without compromising the optimality of the result and without serious

increase in computing time (Zheng et al., 2008a, 2009). We call this constrained guided halving. The true,

unconstrained, guided halving problem, however, where the solution ancestor need not be a solution of the

original halving problem, is likely to be NP-hard (Tannier et al., 2009). In the heuristics necessary for these

two approaches, there is a trade-off between the speed of constrained halving versus the (theoretically)

better solution obtainable by unconstrained halving.

Once we make our choices of data and algorithm, we may ask how to evaluate the results. As with most

evolutionary reconstructions, this evaluation is necessarily completely internal, since there is no outside

reference to check against, except simulations. There are many indices for evaluating a reconstruction:

Distance. Most important, there is the objective function; here our genomic distance definition attempts to recover

the most economical explanation of the observed data, namely the minimum number of rearrangement events

(reversals, reciprocal translocations, chromosome fusions/fissions, transpositions) required.

Reuse rate. Each rearrangement operation can create at most two breakpoints in the gene-by-gene alignment of a

genome and its ancestor. When fewer than two are created, one or two pre-existing breakpoint(s) must be ‘‘re-

used.’’ Conversely, when rearranged genomes are optimally reconstructed, some breakpoints may be reused. In

fact, breakpoint re-use is inferred far more frequently in reconstruction than it actually occurs in genome gen-

eration, and is actually a measure of the loss of evolutionary signal inherent in the gene order.

Dispersion. The motivation for guided halving is to resolve the ambiguities inherent in the large number of optimal

halving solutions. One way to quantify the remaining non-uniqueness is to calculate the distances among a sample of

Vitis

Arabidopsis

Carica

Populus

FIG. 1. Phylogenetic relationships among angiosperms with sequenced genomes. The circles indicate likely whole

genome doubling events. The circle in the Populus lineage, representing the locus of the WGD event at the origin of the

willow-poplar family, and the square, representing the ancestor of the rosid dicotyledons, indicate the target ancestors

we reconstruct in this article.
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Table 1. Guided Halving Solutions with and without Singletons, Constrained and Unconstrained

Heuristics, Vitis or Carica as Outgroup, and All Combinations of Full and Defective Homolgy Sets

d(A, Vitis) d(AþA, Populus)

Data sets Genes in A, with singletons d b r d b r Total d

Solutions constrained to also be solutions of genome halving

PPV 2104 638 751 1.70 454 690 1.32 1092

PPV, PP 2940 649 757 1.71 737 1090 1.35 1386

PPV, PV 5308 1180 1331 1.77 1083 1457 1.49 2263

PPV, PP, PV 6144 1208 1363 1.77 1337 1812 1.48 2545

Solutions unconstrained

PPV 2104 593 734 1.62 512 733 1.40 1105

PPV, PP 2940 616 752 1.64 778 1119 1.39 1394

PPV, PV 5308 1121 1307 1.72 1147 1486 1.54 2268

PPV, PP, PV 6144 1129 1328 1.70 1437 1871 1.54 2566

d(A, Carica) d(A�A, Populus)

Data sets Genes in A, with singletons d b r d b r Total d

Solutions constrained to also be solutions of genome halving

PPC 2590 896 1075 1.67 565 823 1.37 1461

PPC, PP 3478 905 1085 1.67 884 1282 1.38 1789

PPC, PC 6334 1892 2224 1.70 1262 1700 1.48 3154

PPC, PP, PC 7222 1925 2241 1.72 1541 2065 1.49 3466

Solutions unconstrained

PPC 2590 864 1043 1.66 628 870 1.44 1492

PPC, PP 3478 873 1039 1.68 951 1318 1.44 1824

PPC, PC 6334 1859 2172 1.71 1321 1742 1.52 3180

PPC, PP, PC 7222 1877 2211 1.70 1617 2126 1.52 3494

d(A, Vitis) d(A�A, Populus)

Data sets Genes in A, without singletons d b r d b r Total d

Solutions constrained to also be solutions of genome halving

PPV 2020 560 661 1.69 346 541 1.28 906

PPV, PP 2729 594 690 1.72 453 714 1.27 1047

PPV, PV 4203 573 686 1.67 751 1031 1.46 1324

PPV, PP, PV 4710 675 797 1.69 856 1211 1.41 1531

Solutions unconstrained

PPV 2020 545 652 1.67 375 564 1.33 920

PPV, PP 2729 567 681 1.67 493 745 1.32 1060

PPV, PV 4203 544 674 1.61 782 1034 1.51 1326

PPV, PP, PV 4710 631 785 1.61 916 1250 1.47 1547

d(A, Carica) d(A�A, Populus)

Data sets Genes in A, without singletons d b r d b r Total d

Solutions constrained to also be solutions of genome halving

PPC 2464 772 934 1.65 412 607 1.36 1184

PPC, PP 3226 812 981 1.66 536 809 1.33 1348

PPC, PC 4651 779 926 1.68 774 1050 1.47 1554

PPC, PP, PC 5234 898 1088 1.65 892 1253 1.42 1790

Solutions unconstrained

PPC 2464 758 921 1.65 454 639 1.42 1212

PPC, PP 3226 796 967 1.65 584 839 1.39 1380

PPC, PC 4651 764 911 1.68 804 1090 1.48 1568

PPC, PP, PC 5234 861 1058 1.63 952 1303 1.46 1813

A, pre-doubling ancestor of Populus; A�A, doubled ancestor; PPV, PPC, full gene sets; PP, defective, missing grape or papaya

ortholog; PV, PC, defective, missing one poplar paralog; d, genomic distance; b, number of breakpoints; r¼ 2d/b, reuse statistic.
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solutions. Thus, we can compare the average distance between the alternate solutions in one method to the average in

another, to see which is the less dispersed, or more compact. And we can compare these ‘‘within-group’’ distances to

‘‘between-group’’ distances, to assess statistically how much our methodological choices affect the results.

In this article, we will refer repeatedly to a main tabulation of results, Table 1, in which we discover the

unexpected rapid evolution of the Carica gene order in comparison with that of Vitis. In Section 2, we

report on the origin and processing of our gene-order data and the construction of the full and defective

homology sets. In Section 3, we take up the discussion of our measures for assessing the quality of

reconstructions. Then, in Section 4, we discuss the halving problems, and sketch a new algorithm for

unconstrained guided halving. In Section 5, we evaluate the utility of singletons and of defective homology

sets. Then, in Section 6, we assess the two guided halving algorithms on real and simulated data. Section 7

proposes a way to use unassembled genome sequence in contig form, as a input to the reconstruction

algorithm, an approach that could potentially have wide use in gene order phylogeny. In Section 8, we

demonstrate the phylogenetic validity of reconstructing the Populus ancestor using either Vitis or Carica, or

both, as outgroups. Note that we have not included Arabidopsis in our analyses; as will be explained in

Section 9, this was precluded by algorithmic complications due to two rounds of whole genome dupli-

cations and by a paucity of data in the appropriate configurations.

2. THE POPULUS, VITIS, AND CARICA DATA

Annotations for the Populus, Vitis, and Carica genomes were obtained from databases maintained by the

U.S. Department of Energy’s Joint Genome Institute (Tuskan et al., 2006), the French National Sequencing

Center, Genoscope ( Jaillon et al., 2007), and the University of Hawaii (Ming et al., 2008), respectively. An

all-by-all BLASTP search was run on a data set that included all Populus and Vitis protein coding genes,

and orthoMCL (Li et al., 2003) was used to construct 2104 full and 4040 defective gene sets, in the first

case, denoted PPV, containing two poplar paralogs (genome P) and one grape ortholog (genome V), and in

the second case, denoted PV or PP, missing a copy from either P or V. This was repeated with Populus and

Carica, genomes P and C, respectively, to obtain 2590 full (PPC) and 4632 defective (PC or PP) sets. The

location on chromosomes (or contigs in the case of Carica) and orientation of these paralogs and orthologs

was used to construct our database of gene orders for these genomes. Contigs containing only a single gene

were discarded from the Carica data.

3. EVALUATION OF SOLUTIONS

Developing methods for historical inference about genomes is an uncertain enterprise, since there is

usually no way of checking the results against historical truth, the fossil record being extremely frag-

mentary, vast evolutionary time scales generally precluding laboratory experimentation and simulation

being extremely dependent on simplifying assumptions.

Nevertheless, there are meaningful evaluation criteria. Parsimonious explanations are to be preferred to

uneconomical ones, or if there is an accepted probability model, most likely explanations are better than

unlikely ones. Low variance estimates are better than high variance ones. And methods that allow internal

tests of significance, e.g., the boot-strap, are desirable. Here we will discuss the three sorts of evaluation we

use in this study.

3.1. Genome distance and breakpoint graph

The distance measures we use are based on parsimony. As such they are likely to produce underestimates

of the number of rearrangements historically intervening between two genomes, especially if this number is

large. Nevertheless, lacking a credible probabilistic model for rearrangement processes, we can rely on the

current measures, as long as we do not forget the inherent bias towards ‘‘shorter’’ solutions.

Genome comparison algorithms generally involve manipulations of the bicolored breakpoint graph

(Bafna and Pevzner, 1996; Tesler, 2002) of two genomes, called the black and the gray genomes, on

the same set of n genes, where two vertices are defined representing the two ends of each gene, and an

edge of one color joins two vertices if the corresponding gene ends are adjacent in the appropriate
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genome. Omitting the details pertaining to the genes at the ends of chromosomes, the genomic distance

d, i.e., the minimum number of rearrangements necessary to transform one genome into the other, satisfies

d¼ n� c, where c is the number of alternating color cycles making up the breakpoint graph (Yancopoulos,

et al. 1995).

It is well-known (Mazowita et al. 2006; Sinha and Meller, 2008) that, in practice, genomic distance

depends strongly on the degree of resolution of the genomic data. The smaller the threshold for conserved

segment size and the greater the number of segments, the greater the distance. This is true for b and r as

well. We will have to take account of the dependence of d on n when we investigate the effects of

singletons, types of homology class, algorithm version and outgroup in Section 5.

3.2. Breakpoint reuse

If d is the number of rearrangements and b the number of breakpoints, the reuse (Pevzner and Tesler,

2003) variable r¼ 2d/b can take on values in 1� r� 2. Completely randomized genomes will have r close

to 2, so that if an empirical comparison has r*2, we cannot ascribe much significance to the details of the

reconstruction (Sankoff, 2006). This is particularly likely to occur for genomes that are only very distantly

related. In fact, studies of mammalian genomes (Sinha and Meller, 2008) have shown a very close cor-

relation between r and d. This does not indicate an actual tendency towards breakpoint re-use throughout a

phylogenetic domain, since then r would be elevated even for closely related genomes, but rather a loss of

gene-order signal due to inadequate modeling of evolutionary processes and/or the reconstruction of

homologous gene orders (Sankoff, 2006).

3.3. Dispersion

As we will see in Section 4, algorithms for reconstructing ancestral genomes generally allow two or

more choices at many stages. It suffices to make this choice randomly to generate a sample of alternative

solutions. The distances between these solutions are suggestive of the reliability of the method. A method

that produces solutions within a few rearrangements of each other is preferable to one that generates a set

of very heterogeneous solutions, as long as this improvement does not come with the cost of an increased

bias.

4. GUIDED HALVING

The genome halving problem (El-Mabrouk and Sankoff, 2003) asks, given a genome T with two copies

of each gene, distributed in any manner among the chromosomes, to find the ‘‘ancestral’’ genome, written

A�A, consisting of two identical halves, i.e., two identical sets of chromosomes with one copy of each

gene in each half, such that the rearrangement distance d(T, A�A) between T and A�A is minimal. Note

that part of this problem is to find an optimal labeling as ‘‘1’’ or ‘‘2’’ of the two genes in a pair of copies, so

that all n copies labeled ‘‘1’’ are in one half of A�A, and all those labeled ‘‘2’’ are in the other half. The

genome A represents the ancestral genome at the moment immediately preceding the WGD event giving

rise to A�A.

The guided genome halving problem (Zheng et al., 2006) asks, given T as well as another genome R

containing only one copy of each of the n genes, find A so that d(T, A�A)þ d(A, R) is minimal. The

solution A need not be a solution to the original halving problem.

In previous studies (Zheng et al., 2006, 2008a; Sankoff et al., 2007), we found that the solution of the

guided halving problem is often a solution of the original halving problem as well, or within a few

rearrangements of such a solution. This has led us to define a constrained version of the guided halving

problem, namely to find A so that A�A is a solution to the original halving problem and d(T, A�A)þ d(A, R)

is minimal. This has the advantage that a good proportion of the computation, namely the halving aspect, is

guaranteed to be rapid and exact, although the overall algorithm, which is essentially a search among all

optimal A, remains heuristic. Without sketching out the details of the lengthy algorithm, the addition of

gray edges representing genome A to the breakpoint graph, as in Figure 2, must favor configuration (b) over

(c), even though there are as many cycles created by (c) as by (b). This is a consequence of the original

halving theory in El-Mabrouk and Sankoff (2003). Otherwise A�A may not be a halving solution. This,
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however, may bias the reconstruction of A towards T and away from R. For the present work, we im-

plemented a new version of the algorithm, as sketched in Section 4.1, treating configurations (b) and (c)

equally in constructing A. The choice among two or more configurations of form (b) or (c) is based on a

look-ahead calculation of what effect this choice will have on the remaining inventory of configurations of

form (b) and (c). The new algorithm requires much more computation, but its objective function is better

justified.

4.1. The new algorithm

First we define paths, which represent intermediate stages in the construction of the breakpoint graph

comparing T and A�A and the breakpoint graph comparing A and R. Then we define pathgroups, which

focus on the three current paths leading from three ‘‘homologous’’ vertices in the graph, namely two copies

in T and one in R. Note that each vertex represents one of the two ends of a gene.

Paths. We define a path to be any connected fragment of a breakpoint graph, namely any connected

fragment of a cycle. We represent each path by an unordered pair (u, v)¼ (v, u) consisting of its current

a c

b d

FIG. 2. Choice of gray edge to add at each stage of the reconstruction of A and A�A. Each black in the diagram

represents either an adjacency in T or R or an alternating color path with a black edge at each endpoint. If vertex w is

copy ‘‘1’’ in T, then �ww is copy ‘‘2,’’ and vice versa. (a) Configuration requiring the creation of three cycles, two in the

breakpoint graph of T and A�A, and one in the breakpoint graph of A and R. (b) Configuration requiring the creation of

two cycles in the breakpoint graph of T and A�A, necessary for A�A to be a solution of the genome halving problem.

(c) Alternative configuration in solution of guided halving A�A is not also required to be a solution of the halving

problem. (d) Look-ahead when there are no configurations (a), (b), or (c). Here the addition of three gray edges creates a

configuration (c).
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endpoints, though we keep track of all its vertices and edges. Initially, each black edge in T is a path, and

each black edge in R is a path.

Pathgroups. A pathgroup, as in Figure 2, is an ordered triple of paths, two in the partially constructed

breakpoint graph involving T and A�A, and one in the partially constructed breakpoint graph involving R

and A, where one endpoint of one of the paths in T is the duplicate of one endpoint of the other path in T,

and both are orthologous to one of the endpoints of the path in R. The other endpoints may be duplicates or

orthologs to each other, or not.

In adding pairs of gray edges to connect duplicate pairs of terms in the breakpoint graph of T versus

A�A (which is being constructed), our approach is basically greedy, but with a careful look-ahead. We can

distinguish four different levels of desirability, or priority, among potential gray edges, i.e., potential

adjacencies in the ancestor.

Recall that in constructing the ancestor A to be close to the outgroup R, such that A�A is simultaneously

close to T, we must create as many cycles as possible in the breakpoint graphs between A and R and in the

breakpoint graph of A�A versus T. At each step, we add three gray edges.

� Priority 1. Adding the three gray edges would create two cycles in the breakpoint graph defined by T and A�A,

by closing two paths, and one cycle in the breakpoint graph comparison of A with the outgroup, as in Figure 2a.
� Priority 2. Adding three gray edges would create two cycles, one for T and one for the outgroup, or two for T and

none for the outgroup, as in Figure 2b,c.
� Priority 3. Adding the gray edges would create only one cycle, either in the T versus A�A comparison, or in the

R versus A comparison. In addition, it would create a higher priority pathgroup, as in as in Figure 2d.
� Priority 4. Adding the gray edges would create only one cycle, but would not create any higher priority pathgroup.

The algorithm simply completes the steps suggested by the highest priority pathgroup currently avail-

able, choosing among equal priority pathgroups according to a look-ahead to the configuration of priorities

resulting from competing moves.

At each step, we must verify that a circular chromosome is not created, otherwise the move is blocked.

As in El-Mabrouk and Sankoff (2003), this check requires a constant time. The algorithm terminates when

no more pathgroups can be completed. Any remaining pathgroups define additional chromosomes in the

ancestor A.

5. ON THE UTILITY OF SINGLETONS AND DEFECTIVE HOMOLOGY SETS

From the last column of Table 1, it is clear that d varies widely as a function of the four factors,

inclusion/exclusion of singletons, inclusion/exclusion of defective homology sets, outgroup species, and

heuristic. But it is also clear that d depends on n, in the first numerical column in the table (Mazowita et al.,

2006; Sinha and Meller, 2008). Thus, we must control for the dependence of d on n in teasing out the

relative contribution of each of these factors. In Figure 3, we group the 32 points in the plot of d versus n,

taken from the 32 rows in Table 1, according to choice of outgroup, inclusion or not of singletons,

combination of homology classes and algorithm version. We will return to the almost imperceptible

differences between the constrained and unconstrained algorithms in Section 6, and to the choice of

outgroup in Section 8, but we can observe here that the inclusion of singletons has a dramatic effect on the

rate of increase of d on n. Though this effect can theoretically be generated by rearrangements, in practice it

is better considered as noise in the analysis (Choi et al, 2007; Zheng et al., 2007). This is confirmed by the

greater values of r, indicating degradation of evolutionary signal, almost everywhere in the upper half of

Table 1 compared to the lower half.

We also note that the increase in d caused by adding defective homology sets to the analysis is really due

to the disproportionate numbers of singletons in these sets. The trend lines for the four different combi-

nations of homology sets are parallel and steeply sloped. This slope is largely due to the presence of

singletons in the data for the two highest point on each line, and also to the higher rate of evolution of

Carica for the highest and third highest points. The actual effect of homology class can be traced by

comparing the lowest points on the four lines, the second lowest points, and so on. This shows a relatively

gradual increase.

RECONSTRUCTION OF ANCESTRAL GENE ORDER IN ANGIOSPERMS 1359



6. COMPARISON OF THE HEURISTICS

In Table 1, the constrained guided halving algorithm always does better than the unconstrained guided

halving heuristic, as measured by the total distance in the last column. At the same time, the unconstrained

heuristic had a clear effect in reducing the bias towards Populus, in each case decreasing the distance to the

outgroup, compared to the constrained heuristic. This decrease was accompanied by a small decrease in r

for the outgroup analysis.

In fact, the decrease in the bias was far greater than the increase in total cost, meaning that if bias

reduction is important, then this heuristic is worthwhile, despite its inability to find a minimizing ancestor

and its lengthy execution time.

To further investigate the behavior of the new algorithm, we simulated evolution by M inversions and

translocations (in a 10:1 proportion) from a genome A to produce an outgroup genome R and 1000–M

rearrangements from a WGD genome A�A to produce a descendant genome T. We then applied the

constrained and the new algorithms, showing that the new one was superior when M� 600, but not for

M� 700 (Fig. 4, right).
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FIG. 3. Effect of controlling for the number of genes. (Upper left) Carica evolving faster than Vitis. (Upper right)

Rapid increase in distance due to singletons. (Lower left) Effect of homology classes. (Lower right) Almost im-

perceptible effect of algorithm version.
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Considering the 16 comparisons in the real data between the constrained and the new algorithm, the

change in the total distance also shows a distinct correlation (r2¼ 0.5) with the distance from the outgroup

and A. We point this out even though the constrained algorithm, as we have seen, seems superior when the

distance between R and A is more than 20% of the total distance. This is plotted in Figure 4 (left).

The difference between the simulations, where the new method is generally superior, and the real data,

where the new method would seem to be superior only when the outgroup is very close to the ancestor, must

be ascribed in large part to some way the model used for the simulations does not correspond to how the real

data was generated. The ‘‘failure’’ of the new algorithm to do better with the real data cannot be ascribed to its

inability to find good local optima, since it succeeds with simulated data. One clue is the relatively high reuse

rate in the comparison between the outgroup and A, compared with that between Populus and A�A.

7. REARRANGEMENTS OF PARTIALLY ASSEMBLED GENOMES

Our analyses involving Carica have incorporated an important correction. The genomic distance be-

tween Carica and A counts many chromosome fusion events that reduce the number of ‘‘chromosomes’’ in

Carica from 223 to the 9. These are not a measure of the true rearrangement distance, but only of the

current state of the Carica data. Since these may be considered to take place as a first step in the

rearrangement scenario (Yancopoulos et al., 2005), we may simply subtract their number from d to esti-

mate the true distance. At the same time, many of the breakpoints between A and Carica are removed by

these same fusions, so these should be removed from the count of b as well. The calculations in Table 2

illustrate how the d(A, Carica) results in the bottom quarter of Table 1 were obtained.

Figure 5 (left) shows experimental results on how the increasing fragmentation of a genome into contigs,

using a random fragmentation of Vitis grenome, decreases the estimated distance between Vitis and A.

This is understandable, since the freedom of the contigs to fuse in any order without this counting as a

rearrangment step, inevitably will reduce the distance by chance alone. But the linearity of the result

suggests that this decrease is quite predictable, and that the estimates of the distance between Carica and A

are actually underestimates by about 10%.

Figure 5 (right) shows that creating contigs by randomly breaking the Vitis genome does not create

excessive variability among the solutions, only the same as the dispersion of alternate solutions for the

original Vitis data, a few percentage points of the distance itself.
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FIG. 4. Performance of the constrained and unconstrained heuristics as a function of the real (left) or simulated

(right) distance of the outgroup from A. Note that, despite the similarity of the two curves, the simulated results indicate

that the new (unconstrained) algorithm is better when the outgroup proportion of total distance is no larger than 0.6,

whereas with the real data this is only predicted to happen when that proportion is below 0.2.
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8. A COMPARISON OF THE OUTGROUPS

Perhaps the most surprising result in Table 1 is that the Vitis gene order is decidedly closer to Populus

and its ancestor A than Carica is. Both the Tree of Life and the NCBI Taxonomy Browser currently exclude

the Viticae family from the rosids, though some older taxonomies do not make this distinction.

Before interpreting this result, we mention two sources of error in the comparison of Vitis and Carica.

The first is that the Carica distances are based on a larger gene set; without singletons and defective

homology sets PPC is 22% larger than PPV. As a rule of thumb, we can expect distances to be approxi-

mately proportional to the number of genes. However, as we have seen in Figure 3, Carica evolves faster

even if we control for gene number.

The other source of error is due to the contig data, and this results in an underestimate of the Carica-

ancestor distance. From Figure 5, we can estimate that the Carica distances are underestimated by about

10% because of the 223 contigs in the Carica data. Thus, the discrepancy between the two outgroups is

actually larger than it appears to be.

We may conclude that this difference is genuine and substantial. Then, assuming that Populus and

Carica have a closer phylogenetic relationship, or even a sister relationship, our results can only be

explained by a faster rate of gene order evolution in Carica than in Vitis.

Table 2. Correction for Contig Data

d(A, Carica) Correction

Data sets Genes in A d b r c d* a ct ca b* r*

PPC 2464 986 1090 1.81 223 772 76 7 1371 934 1.65

PPC, PP 3226 1027 1132 1.81 224 812 74 6 2091 981 1.66

PPC, PC 4651 1084 1177 1.84 314 779 123 9 3470 926 1.68

PPC, PP, PC 5234 1214 1318 1.84 325 898 112 12 3910 1088 1.65

A, pre-doubling ancestor of Populus; PPC, full gene sets; PP, defective, missing papaya ortholog; PC, defective, missing one poplar

paralog; d, genomic distance; b, number of breakpoints; r¼ 2d/b, the reuse statistic; c, number of contigs; d*, distance corrected for

excess of contigs over true number of chromosomes¼ d� cþ 9; a, number of ‘‘obvious fusions’’; ca, number of common adjacencies;

ct, number of common telomeres; b*, corrected number of breakpoints¼ number of genes � ca� ct� 2a; r*, corrected reuse

statistic¼ 2d*/b*. Data without singletons. Solutions obtained by constrained algorithm.
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8.1. Dispersion

As described in Section 3.3, we generated 100 different solutions with the constrained halving and

unguided halving algorithms using each outgroup, and 54 for unconstrained halving with Vitis as the

outgroup and 15 with Carica. The genomic distances were normalized by number of genes in common in

the two genomes being compared before input to the analysis. This number was 2464 genes for Carica

comparisons, 2020 for Vitis comparisons, and 1514 for Carica-Vitis comparison.

For each of the six outgroup/method combinations, we calculated the average normalized distance

between all of its solutions to each of the other combinations, leading to the 6�6 bottom right submatrix in

Table 3. We input this into a two-dimensional principal coordinates analysis in the R package, producing

the pattern of six black dots in Figure 6. It can be seen that the first dimension of the figure represents the

right-to-left movement from unguided halving towards increasing influence of the outgroup. The second

dimension distinguishes the Carica and Vitis analyses.

We then calculated the average distance between all the alternate solutions within each outgroup/method

combination and divided this by the original input distances to the vertical and horizontal neighbors of

the corresponding point on Figure 6; these two factors were multiplied by the corresponding distances on

the principal coordinates graph in order to obtain the axes of ellipses. The ellipses, shaded in the figure,

represent the degree of dispersion of the solutions around each of the six points. In the case of the

constrained solution based on Vitis, a quadrilateral shape was employed because of the asymmetry of the

horizontal comparisons involving the unconstrained guided halving and the unguided halving solutions.

Figure 7 situates the ancestral reconstructions in a principal coordinates analysis including the Carica

and Vitis genomes. The Populus genome is added after the analysis on the basis of halving distances; it was

not included in the principal coordinates analysis because of orthology assignment inconsistencies arising

in the calculations of the distances between several unduplicated genomes and the descendant of a WGD.

This figure shows that the ancestral reconstructions all occupy a relatively small area of solution space. It

also represents the movement already studied in Figure 6 from unguided to constrained to unconstrained

analysis in the direction of the outgroup.

8.2. Using both outgroups

There are 1734 complete homologous gene sets, including two Populus copies and one copy in each of

Carica and Vitis. (Some of these, constituting 1-gene contigs in Carica, were not used for the analyses in

Table 1; here we have 332 Carica contigs, instead of the 223 in the previous analysis.) In the same way as

the unconstrained algorithm in Section 4 is based on a modification of the guided halving algorithm for one

outgroup in reference (Zheng et al., 2008a), we could define an unconstrained version of the two-outgroup

guided halving algorithm implemented in that earlier work. For convenience, however, we use the con-

strained version of two-outgroup guided halving from reference (Zheng et al., 2008a) to find the ancestor

(small circle) genome in Figure 8a as a first step, then compute the ‘‘median’’ genome based on this

ancestor, Carica and Vitis. The median problem here is to find the genome, the sum of whose distances

from ancestor A, Carica and Vitis is minimal. This problem is NP-hard (Tannier et al., 2009), and solving it

is barely feasible with the 1734 genes in our data, requiring some 300 hours of MacBook computing time.

Table 3. Matrix of Average Distances between Analyses, Normalized�1000

Carica Vitis ConC ConV UncC UncV UgC UgPV

Carica 0.0 458.4 400.2 432.6 394.5 432.6 448.9 463.7

Vitis 0.0 289.3 278.7 305.2 270.3 313.7 329.7

ConC 14.2 52.2 40.6 57.5 68.6 81.9

ConV 16.8 73.3 35.1 76.6 68.3

UnvC 16.6 69.4 94.6 107.0

UncV 20.3 89.2 87.1

UgC 45.0 63.4

UgV 47.0

Matrix of average distances between analyses, normalized�1000. Diagonal contains average within-group distances (not input into

principal components analysis). Carica and Vitis data used in Figure 7 but not in Figure 6. Con, constrained; Unc, unconstrained; Ug,

unguided; C, Carica; V, Vitis.
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This initial result unfortunately inherits the same defect as the Carica data, i.e., it is composed of contigs

rather than true chromosomes. In this case, the median genome contains 118 ‘‘contig-chromosomes.’’ We

correct the distances to the median by subtracting the difference in the number of chromosomes/contigs

between the three genomes and the median. This corresponds to disregarding the fusions counted in the

original distances that are essentially carrying out an optimal assembly, modeling an analytical process, not

a biological one. This produces the corrected values in Figure 8b.

Let us compare the distance from Vitis and from Carica to ancestor A, passing through the median, in

Figure 8 (508 and 578, respectively), with the minimum distances1 in Table 1, and proportionately adjusted

for the reduced number of genes (560 · 1734
2020
¼ 481 and 772 · 1734

2464
¼ 543, respectively. Passing through the

median modestly augments (by 27 and by 35, respectively) both trajectories. But using the median di-

minishes the total cost of the phylogeny, i.e., in comparison with a phylogeny where there is no common

evolutionary divergence of the outgroups from Populus from 481þ 543¼ 1024 to 341þ 417þ 161¼ 919.

Figure 8b confirms that the papaya genome has evolved more rapidly than the grapevine one.

8.3. Molecular evolutionary correlates of rearrangement rates

With obvious sources of error in our papaya/poplar and three-way comparisons (such as the incomplete

assembly of the papaya genome and potentially error-prone ortholog/paralog determination) being insuf-

ficient explanations for papaya’s enhanced rearrangement rate relative to Vitis or the diploid poplar an-

cestor, A, we have sought a biological interpretation.

Papaya, grapevine, and poplar all share the ancient g WGD. ‘‘Paleologous’’ (paralogous) gene pairs

identified as g descendants, as mined from the three genomes, show different rates (Ks) of synonymous

substitutional change (Tang et al., 2008). Median Ks for Vitis g pairs (1.22) is substantially lower than that

for poplar (1.54) or papaya (1.76).

Synonymous substitutional rates can be interpreted as placeholders for divergence times (Cui et al.,

2006), but they have also been correlated with different life strategies in plants, e.g., the woody perennial

versus the annual habit, and as such, generation time (Gaut and Morgan, 1996). Recent evidence from

large-scale phylogenetic studies incorporating many taxa and many genes has backed the latter inference

(Smith and Donoghue, 2008).

The generation times of papaya, poplar, and grapevine show a pattern entirely (negatively) consistent

with median Ks values for g paralogs. Papaya can reproduce in 9–15 months (Ming et al., 2008), poplar in

4–6 years (Tuskan et al., 2006), and grape has reproduced sexually in approximately 80-year intervals since

domestication (Arroyo-Garcı́a et al., 2006). In turn, these generation times and Ks values correlate well with

the genomic rearrangement rates calculated here (Table 1; Fig. 8). As such, we hypothesize a common

cause argument, short generation time, to explain the aberrant-seeming rearrangement history for papaya

relative to its phylogenetic relationships, which would otherwise have suggested this taxon to be closer than

grapevine to the diploid poplar ancestor, A. Future median genome/guided halving analyses incorporating

grape

papaya

poplar

446

631

269

grape

papaya

poplar

347

417

161

Rearrangement median

corrected distance

a b

341341

FIG. 8. Branch lengths in angiosperm phylogeny, using two estimates of the median, and applying the contig

correction. (a) Before correcting for contig fusions. (b) After correction.

1Constrained analyses, no singleton or defective homology sets.
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weedy species such as Arabidopsis and Mimulus might help bolster or refute this hypothesis depending on

their rearrangement rates relative to other plant genomes.

9. CONCLUSION

The main contributions of this article are as follows:

� the discovery of the rapid rate of gene order evolution in Carica compared to Vitis,
� a systematic way of controlling for the dependence of rearrangement distance on the number of genes,
� a way of visualizing the reduction of dispersion of the solutions to a problem when comparing methods to solve it,
� a way to use incompletely assembled contigs in genome rearrangement studies,
� a new unbiased algorithm for guided genome halving, and
� the systematic use of reuse rates to show that the inclusion of singletons are not helpful in ancestral genome

reconstruction.

In this article, we have not considered the Arabidopsis genome. One reason is simply the paucity of full

homology sets containing exactly four Arabidopsis copies, with or without copies from one or more

outgroups. This means we would have to depend on defective homology sets to a greater degree, with the

concomitant problem of deciding which if any of the genes in the sets are paralogs dating from the most

recent WGD. A more fundamental problem is that the logic of guided genome halving is to use the gene

order of the outgroup to influence the placement of the two paralogs in the ancestral tetraploid. But, as in

the case of Arabidopsis, if the pair of paralogs is itself the result of an earlier WGD, the influence of the

outgroup is self-contradictory, trying to position each pair of genes in the same two positions. We plan to

elaborate a more comprehensive analysis avoiding both these difficulties, but this is beyond the scope of

this article.
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