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Abstract
Whereas de novo assemblies of RNA-Seq data are being published for a growing number

of species across the tree of life, there are currently no broadly accepted methods for evalu-

ating such assemblies. Here we present a detailed comparison of 99 transcriptome assem-

blies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS

and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and
Oryza sativa transcriptomes provide new insights into the strengths and limitations of tran-

scriptome assembly strategies. We find that the leading assemblers generate reassuringly

accurate assemblies for the majority of transcripts. At the same time, we find a propensity

for assemblers to fail to fully assemble highly expressed genes. Surprisingly, the instance of

true chimeric assemblies is very low for all assemblers. Normalized libraries are reduced in

highly abundant transcripts, but they also lack 1000s of low abundance transcripts. We con-

clude that the quality of de novo transcriptome assemblies is best assessed through consid-

eration of a combination of metrics: 1) proportion of reads mapping to an assembly 2)

recovery of conserved, widely expressed genes, 3) N50 length statistics, and 4) the total

number of unigenes. We provide benchmark Illumina transcriptome data and introduce

SCERNA, a broadly applicable modular protocol for de novo assembly improvement.

Finally, our de novo assembly of the Arabidopsis leaf transcriptome revealed ~20 putative

Arabidopsis genes lacking in the current annotation.
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Introduction
Massively parallel second generation sequencing technologies (SGS syn. NGS—next generation
sequencing) have substantially reduced the cost of generating transcriptome sequence data,
driving a rapid expansion of sequencing data resources[1]. The Sequence Read Archive (SRA)
at the National Center for Biotechnology Information (NCBI) is growing at an exponential rate
and at the beginning of 2015 the total number of bases exceeded 3.8x1015[2]. Although the vast
majority of sequence data is dedicated to exploring genomes, transcriptomics is growing fast
[3]. This increase correlated with increased availability of high performance de novo transcrip-
tome assemblers. Given these developments, there is a growing need for standardization of
benchmarks and metrics used to evaluate transcriptome assemblies.

RNA-Seq has been leveraged with de novo transcriptome assembly to learn about plant
innovations including parasitism[4–7] and C4 photosynthesis[8], plant processes including
fruit ripening[9], drought response[10], and flavonoid biosynthesis[11], chemical defenses[12],
and the evolution of sex chromosomes[13]. The recent boom of RNA-Seq studies involving de
novo assembly has motivated innovations in assemblers developed specifically for RNA-Seq
data (Velvet[14, 15], Oases[16, 17] (includes Velvet[18]), SOAPdenovo[19–29], SOAPdenovo-
Trans[30], CLC[31], ABySS[32], Trinity[5, 13, 33–38]). Comparison of de novo transcriptome
assembler performance is hindered by lack of widely used standard quality metrics[39] or rig-
orous evaluation of a comprehensive selection of assemblers with a transcriptome from a high
quality reference genome. Reference-dependent metrics have been proposed that include accu-
racy, completeness, contiguity, chimerism and variant resolution[40] which, in large part,
rely upon arbitrary thresholds to inform assembly quality (e.g. the number of genes covered
>80%). Often the length statistics reported for de novo assemblies reveal that the number of
unigenes (singletons, contigs and scaffolds—collectively “unigenes”) is far greater than the
expected number of transcripts and that the total length of the assembly (total number of
bases) also differs from the expected transcriptome length. Evaluation of an assembly output
typically includes: 1) N50 (the unigene length at which the cumulative assembled base pairs
reaches 50% of the total assembly length), 2) the number of unigenes (n) greater than length
x, and/or 3) the proportion of sequencing reads that map back to an assembly. While these
can be informative statistics for relative comparisons, individually they fall short of adequately
informing absolute quality. For instance, a high rate of mis-assembly resulting in chimeras
could inflate the N50 and length statistics. Similarly, a high rate of non-assembly of low-moder-
ate abundance transcripts may inflate the N50 and length statistics.

Estimation of assembly success by reporting the relative frequency of hits to expected
sequences (e.g. conserved gene sequences in external databases) by itself can be rather arbitrary
and fails to inform how well the assembly represents the data and thus the transcriptome, espe-
cially when the search parameters are not consistent from study to study. Reporting the recov-
ery of one or more conserved sets of genes has been used[7, 34, 41–46] as a metric for sampling
effort and assembly success, but the extent to which conserved genes serve as a proxy for the
whole transcriptome remains unknown. Transcript annotation efforts are largely aimed at
reporting the number of unigenes with hits in an external database such as NCBI’s non-redun-
dant protein sequences database[2] (NR), the Kyoto Encyclopedia of Genes and Genomes[47]
(KEGG), Swiss-Prot[48], Clusters of Orthologous Groups of proteins[2] (COG) and The Gene
Ontology[49] (GO). Sequence comparisons against these databases could elucidate chimeras
but there are no established criteria for using alignment metrics to evaluate assembly quality.

Here we describe an in-depth comparison of 99 assemblies (software in Table 1) of the Ara-
bidopsis thaliana leaf transcriptome leveraging the 10th generation Arabidopsis genome as
ground truth. Our analysis focuses on data produced by Illumina sequencing technology for 3
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reasons: 1) this technology contributes the majority of new data to NCBI’s sequence read
archive, 2) the cost per base provides a clear price advantage over other technologies and 3)
many of the current de novo assemblers are designed to assemble Illumina data. We also evalu-
ated the accuracy of measurements of expression levels extracted from de novo assemblies by
interrogating the same RNA samples with NimbleGen Multiplex microarrays and qRT-PCR.

The results of these analyses reveal that Trinity[50], CLC[51] and SOAPdenovo-trans[30,
52] assemblers have superior performance. We analyzed primary assemblies as well as those
that were post-processed by a series of steps akin to the Trinity pipeline that yielded improved
key assembly metrics. We introduce SCERNA, a collection of versatile post-processing tools
and protocols for SGS transcriptome data that improve the quality of de novo transcriptome
assemblies.

Results

Transcriptome data and reference genome
Read mapping reference and data summary statistics. The TAIR10 annotation of the

Arabidopsis thaliana genome was used as the reference for mapping of reads from replicate
young-leaf RNA samples. To reduce variation from multiple RNA samples, we generated two
large RNA pools (~1 mg) that were used exclusively in all analyses presented here. Arabidopsis
cDNAs were refined to include only the longest splice variants for detected transcripts (25,512
genes—the “detected gene set”), which includes 82.4% of the 27,206 nuclear, protein-coding A.
thaliana genes. S1 Table contains a summary of sequencing and read alignment statistics for all
RNA-Seq libraries used in this study. A normalized Illumina library produced 6.4 Gbp in ~27
million 120 bp paired-end reads. The replicated non-normalized Illumina libraries each pro-
duced ~4.2 Gbp represented by ~27 million 76x76 bp paired-end reads.

Arabidopsis gene tagging and cDNA coverage. The coverage of each A. thaliana gene
(see S2 Table for definitions of assembly metrics) was determined by mapping quality-trimmed
reads to the longest splice variant of the detected TAIR10 cDNAs. Fig 1 shows the distribution

Table 1. Summary of assembly software.

Assembler ID Version Reference/URL

Mosaik Mosaik Assembler (v1.1.0014) http://bioinformatics.bc.edu/marthlab/Mosaik

Trinity‡ Trinity (release 3122011 and release 01132014§) http://trinityrnaseq.sourceforge.net/[50]

Inchworm Trinity (release 3122011)

CLC CLC Assembly Cell (v3.2) http://www.clcbio.com/

CLCscaf*‡ CLC Assembly Cell + Scaffolding (v4.0.6)

Oases Oases (v0.1.22) http://www.ebi.ac.uk/~zerbino/oases/[53]

Velvet Velvet (v1.1.03)

SOAPdenovo SOAPdenovo (v1.04) http://soap.genomics.org.cn/about.html[54]

SOAPtrans*‡ SOAPdenovo-trans (v1.03)

ABySS Trans-ABySS (v1.3.0) http://www.bcgsc.ca/platform/bioinfo/software/abyss[55]

NG MO NextGENe (v2.17) http://www.softgenetics.com/NextGENe_9.html

NG IT

*Used to assembly Illumina biological replicate 1 only
§Used to assemble Rice and subsampled Arabidopsis
‡ Current versions of these assemblers implement the same core assembly algorithm as those tested here (personal communication Dr. Brian Haas,

http://www.clcbio.com/, and http://soap.genomics.org.cn/)

doi:10.1371/journal.pone.0146062.t001
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of cDNA read-level coverage for each of the sequencing data sets in this study. Average cDNA
coverage was highest in the Normalized Illumina library at 79.7%. The average coverage from
the non-normalized Illumina libraries was 76% (±0.21), or 80.7% when combined. The greatest
average cDNA coverage was obtained from the combination of the two non-normalized Illu-
mina libraries. Although the normalized Illumina transcriptome had the greatest proportion of
high coverage cDNAs (at 99–100% coverage) it also lacked reads for a large number of tran-
scripts that were detected in one or more of the other libraries (Fig 1). In contrast, the com-
bined non-normalized datasets (BR12) captured reads for nearly every gene in the detected
gene set.

We predicted the sequencing statistics of the non-normalized Illumina biological replicate
one (BR1) data set using ESTCalc at http://fgp.huck.psu.edu [56]. This simulation indicated
that BR1 would provide tags for all expressed genes. We found that the non-normalized BR1
library (4.2 Gbp of sequence data) generated tags for 96.2% of the detected gene set. Doubling
the sequence data amount with Illumina BR2 tagged an additional 966 genes, bringing the total
to 99.9% of detected genes tagged. Since mean transcript coverage was not substantially
increased in the BR12 combined dataset, BR1 was deemed sufficient to represent the transcrip-
tome for most practical purposes and unless noted, was used for all analyses described below.

Assembly reference definition and data choice for de novo assembly. The TAIR10
cDNA reference-based assembly (with Mosaik-SCERNA–see methods) of BR1 contained
unique assembled unigenes that represented 20,176 cDNAs (79.1% of the detected gene set).
17,723 (87.8%) of these transcripts were covered>50%. 5,336 (20.9%) of the detected cDNAs
were not represented in the Mosaik assembly, indicating insufficient cDNA coverage (e.g. low
expression) to support even a reference-based assembly. When we included a second data set
of equivalent size and quality (Illumina BR2), the number of Mosaik unigenes increased to
20,840 (81.7%). The number of assembled transcripts covered>50% increased to 18,596
(89.2%), while the number of missing genes decreased to 4,672 (18.3%).

An important distinction between the cDNA reference and de novo assembly reference is
between detection and reconstruction, respectively. While we detected 25,512 genes, the

Fig 1. Illumina Sequence coverage of Arabidopsis cDNAs. Coverage of all detected genes by sequencing reads. The darkest bar represents the number
of detected genes not tagged, and each progressively lighter bar represents genes in a bin with a 5% increase in coverage, with the two lightest bars showing
the number of genes covered at >90% and >99%, respectively. Normalized BR12 = Normalized Illumina library from pooled biological replicates 1 and 2,
BR12 = combined coverage of Illumina biological replicates 1 and 2, BR1 = Illumina biological replicate 1, BR2 = Illumina biological replicate 2.

doi:10.1371/journal.pone.0146062.g001
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number of reconstructed genes (>50% coverage) is closer to 18,000, as indicated by the num-
ber of genes represented in our reference-based transcriptome assemblies of BR1 with Mosaik.

Evaluation of de novo assembly via a reference assembly standard
Quality metrics and terms for comparison of de novo assembler outputs. We developed

a comprehensive set of quality metrics for transcriptome assembly (Table 2) that includes refer-
ence-dependent and reference-independent metrics. These metrics were used to evaluate so-
called “primary” assemblies (most basic output of a given assembler) and “post-processed”
assemblies that represent refined assembly outputs (S2 Table). We have also included a select
set of informative analyses of de novo assemblies generated with updated versions of CLC
(CLCscaf), SOAPdenovo (SOAPtrans) and Trinity (see Table 1 and Materials and Methods).

Primary assembly statistics. Primary assemblies are the most basic, or minimal, output of
a given assembler (Table 3). Compared to the Mosaik assembly, the primary assembly statistics
display variable patterns of performance. For instance, all of the assemblies have a greater num-
ber of assembled unigenes than the Mosaik assembly, and many are larger (N50 Mbp), suggest-
ing fragmented and duplicated transcripts. The N50 lengths are all below Mosaik’s 1,838 bp,

Table 2. Summary of assembly quality metrics used in this study.

Assembly Metric Description

Assembled

Sequence Count Number of assembled sequences—i.e. unigenes

Median Length Median length of unigenes

Maximum Length Maximum length of unigenes

N50 Length 50th percentile unigene length

N50 Mbp 50th percentile mega base pairs

N-content Number of ambiguous base pairs

RNA-Seq SCC Spearman’s Rank Correlation Coefficient with Mosaik assembly

RNA-Seq PCC Pearson’s Correlation Coefficient with Mosaik assembly

Mappable Reads Number of quality trimmed reads that map to an assembly (also expressed as %)

Mismatch Error
(%)

Number of base call errors (% of bases called incorrectly)

Alignment Gap
Rate

Alignment gap rate—missing bases

Error (% of unigenes with alignment gap errors)

Type I Coverage

Gap Error—Case I Number of internal coverage gaps (noncontiguous assembly)

Type I ISO Error – Insufficient Overlap—number of instances of non-assembly with

Case II alignment overlap �(kmer– 1)

Type II Error–Case
III

Conflict Overlap—number of instances of non-assembly with alignment overlap >
(kmer– 1)

Type II Error Ambiguity error—assembled sequence has “best hits” to multiple genes (Cases I-V
see S1 Fig)

No Hit Number of “detected genes” not represented by an assembled sequence

Coverage Percentage of cDNA covered by an assembly, not limited to a single assembled
sequence, cumulative

Normalized Bit Normalized Quality Metric—bit score normalized for sequence

Score—BS length, indicator of long and accurate unigenes—penalties: mismatch -2, gap -5

Sequenced Normalized Sequencing Depth Metric—The number of sequenced

Fragment/bp—SFB fragments (orphans or pairs) that map to a unigene, normalized for sequence length

doi:10.1371/journal.pone.0146062.t002
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indicating de novo vs. reference-guided assembly results in fewer full-length sequences, or an
inflation of small subsequences. Some assemblies (SOAPdenovo, Velvet, ABySS) garner a small
proportion of mapped reads, indicating that these primary assemblies may be less representa-
tive, highly fragmented, or especially incomplete compared to the Mosaik standard. The assem-
bly with the number of unigenes most similar to Mosaik is NG IT. This assembly has good
statistics (see unigene count, N50 length) but is the second smallest assembly and middle of the
pack in terms of RNA-Seq correlations (RNA-Seq SCC and PCC with Mosaik, see Table 3),
suggesting a less complete assembly. Yet, the NG IT primary assembly garners the greatest
proportion of mapped reads. The CLC primary assembly is one of the larger assemblies (N50

Mbp), but has the lowest N50 length and the most unigenes while having outstanding RNA-Seq
correlation statistics. Together this indicates the CLC assembly is highly fragmented yet highly
representative of the input data. The Inchworm assembly has excellent length statistics and
good RNA-Seq correlations, yet it has>50,000 unigenes, which is ~2.5 times the number of
unigenes found in the Mosaik assembly. These conflicting patterns suggest that the output of

Table 3. Assembled sequence and RNA-Seq statistics for assemblies of Illumina biological replicate 1 (BR1).

Assembled
Sequences Count

Median
Length

Max.
Length

N50

Length
N50

Mbp
N-content RNA Seq

SCC
RNA Seq
PCC

% Reads
Mapped

Primary Assemblies

Mosaik 20,930 1,326 16,339 1,838 15.57 1,771,804* 1 1 71.7

Inchworm 51,896 435 15,057 1,622 21.83 0 0.95 0.93 81.0

CLC 161,183 135 15,057 578 22.04 7,022 0.96 0.95 65.0

CLCscaf 42,265 313 12,532 1,421 14.73 47,268 0.95 0.93 68.7

Velvet 37,357 629 13,061 1,582 17.85 12,748 0.93 0.91 35.4

SOAPdenovo 44,537 289 15,247 1,322 14.09 304,230 0.87 0.87 24.9

SOAPtrans 37,469 426 21,355 1,557 15.11 515,984 0.93 0.92 65.9

ABySS 28,362 601 14,818 1,474 12.58 1,026 0.92 0.89 34.8

NG MO 30,880 232 7,391 877 7.12 0 0.88 0.81 75.8

NG IT 24,137 602 12,307 1,326 10.51 0 0.93 0.89 82.6

Post Processed Assemblies

Mosaik-S 20,178 1,361 16,339 1,848 15.4 1,707,111* 1 1 71.0

Inchworm-S 34,812 584 15,057 1,560 15.76 0 0.95 0.93 80.2

Trinity-ICB 30,086 543 15,057 1,552 13.25 0 0.90 0.87 75.5

CLC-S 81,734 153 15,057 1,114 16.63 179 0.96 0.94 66.6

CLCscaf-S 32,290 509 12,532 1,511 13.7 1,809 0.95 0.93 68.5

Velvet-S 26,707 729 13,061 1,561 13.4 147 0.91 0.88 34.1

Oases-VO 22,503 722 13,061 1,579 11.36 122 0.82 0.78 28.1

SOAPdenovo-
S

32,515 472 15,175 1,427 12.86 10,040 0.84 0.81 25.4

SOAPtrans-S 27,260 662 21,355 1,622 13.23 402,496 0.91 0.89 63.7

ABySS-S 24,930 717 14,818 1,507 12.1 15 0.91 0.87 34.1

NG MO-S 27,971 255 7,406 912 6.85 0 0.88 0.81 73.5

NG IT-S 22,783 640 12,307 1,344 10.24 0 0.93 0.89 82.0

Unigenes shorter than 100 bp were removed. N-content refers to the number of bases in unigenes that were ambiguous. Trimmed and filtered reads were

mapped to the respective assemblies and percentages were calculated by dividing by the total number of reads from BR1 that mapped to TAIR10 cDNAs.

RNA-Seq correlations used respective Mosaik assemblies as a reference. SCC = Spearman’s rank correlation coefficient and PCC = Pearson’s

correlation coefficient.

*includes gaps in cDNA reference coverage

doi:10.1371/journal.pone.0146062.t003
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each assembler is quite variable and that simple length and read-mapping statistics do not suf-
ficiently describe assembly quality. Recent variants of CLC (CLCscaf), SOAPdenovo (SOAP-
trans) and NGMO (NG IT) are improvements, and show that additional steps beyond those
implemented with basic De Bruijn graph methods have value.

Post-processed assembly statistics. The goal of post-processing is to improve key aspects
of an assembly (e.g. length-statistics and unigene counts) without diminishing other important
features such as the proportion of mappable reads (e.g. for de novo RNA-Seq). In Table 3 the
landscape of assembly statistics appears much more even after refinement by post-processing
with the Velvet-Oases, Inchworm-Chrysalis-Butterfly (Trinity), or our modular SCERNA (Fig
2) post-processing tools. The similarity is greater when length cutoffs are imposed (S2 Fig),
revealing comparatively large differences between the assemblies that are contained in short
rather than long unigenes. The number of unigenes was reduced in all assemblies by SCERNA
(Table 3), and the length statistics are generally improved, some dramatically so. Even the
Mosaik reference-based assemblies were improved with SCERNA post-processing. The RNA-
Seq correlations were not substantially changed nor were the proportions of mappable reads.
For a comprehensive summary of post-processing effects on all Arabidopsis assemblies see S1
File. All assemblies are improved by post-processing, though as expected, none of the de novo
assemblies are as good as Mosaik-S assemblies of the same data.

Evaluation of de novo assembly via a genome (cDNA) standard
Error rates. The error statistics of each primary and post-processed assembly reveal the

occurrence of fragmented, incomplete or incorrect assemblies. By estimating various types of
error we can begin to explain the differences of each de novo assembly compared to the A. thali-
ana cDNA reference. Base call error rates were<0.5% in all post-processed assemblies and
base call error rates were improved (or nominally changed) by post-processing (S1 File). The
proportion of unigenes with alignment gaps (to TAIR10 cDNAs) ranged from 0.001% for
Mosaik-S to 0.005% for Inchworm-S, Velvet-S and CLC-S.

We reported two key error types that inform assembly failures. Type I errors[57] indicate
failure to assemble (fragmentation) and Type II errors[57] indicate annotation ambiguity (with
a subcategory, Case I, that is most indicative of chimerism) (S1 Fig). The number of transcript
assembly gaps between 2 unigenes (Type I Case I) ranged from 16,931 for Mosaik-S to 8,964 in
Oases-VO. Type I Case II counts (overlap�kmer-1) were very low in Mosaik-S at 56 and ran-
ged from 5,637 in CLC-S to 1,227 in ABySS-S. Fragmentation that occurs despite an overlap
>kmer-1 (Type I Case III) was also low in Mosaik-S at 256 and higher in the de novo assem-
blies ranging from 7,819 in CLC-S to 1,381 in Oases-VO.

Type II error occurs when a unigene cannot be unambiguously assigned to a single reference
cDNA. This may indicate that a unigene matches two closely related loci, or that an assembly
error has occurred resulting in a chimera. We first examined pairs of closely related genes
because these may be likely to be misassembled due to high sequence similarity. We plotted the
Ks values for gene pairs (reciprocal best hits) found in each assembly plus those found in our
detected gene set and TAIR10 (S3 Fig). The Mosaik-S assembly plot showed a lack of pairs
with low Ks values compared to the plot for the detected gene set, indicating that closely related
gene pairs were preferentially excluded. To determine if the difference was due to sampling
bias (in which one mate of the pair is expressed at a level sufficient for assembly and the other
is not) or due to limitations of assembly (highly similar reads from closely related gene pairs
are ambiguous) we examined the read count statistics for the 2,080 gene pairs lacking from the
Mosaik-S plot relative to the detected gene set plot. For the majority of missing gene pairs
(1,607, ~75%) there were insufficient reads for assembly, or only sufficient unique reads (SFB
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Fig 2. SCERNA Flowchart. SCERNA stands for Scaffolding and Error correction for de novo assemblies of RNA-Seq data. This collection of post-
processing tools allows flexible implementation at various steps post assembly and with multiple assemblers and data types.

doi:10.1371/journal.pone.0146062.g002
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�0.1; Table 2) for one mate of the pair, and these genes tended to have higher Ks values among
the missing genes (S4 Fig). This is consistent with previous work indicating that older paralo-
gous gene pairs (higher Ks) are less likely to be co-expressed than younger paralogous gene
pairs (lower Ks) [58–62]. 473 expressed gene pairs (EGP) had sufficient read depth for assem-
bly and provided us with a list of co-expressed genes with high sequence similarity.

The instance of successful assembly (BS>1.5; See Table 2) of both mates of the EGPs was
very low for Mosaik-S at only 0.8% (4 EGPs, S5 Fig). Roughly half of the EGPs were repre-
sented by both mates in the Mosaik-S assembly, though ~74% of these were very short (25%
length). Generally, the de novo assemblies contained about the same number of high quality
pairs with Inchworm-S and Velvet-S at 1.5% to NGMO-S and Trinity-ICB at 0.6%. The pri-
mary difference was in the total number of high quality (>1.5BS) unigenes. All de novo assem-
blers produced more high quality EGP unigenes than Mosaik-S. All together, this produced a
reciprocal pattern of “hit/no hit” (S5 Fig) of EGP genes in the de novo assemblies. Between 66–
76% of the EGPs were represented by only one mate of the pair in all de novo assemblies. This
pattern was far less pronounced in the Mosaik-S assembly with multiple low quality unigenes
that represent more pairs, though fewer total EGP genes. This complex pattern shows that
de novo assemblers tend to assemble higher quality unigenes representing one mate, while
Mosaik-S assembles lower quality unigenes that represent more pairs. Taken together with the
very low Type II error rates for most of the assemblies, this analysis of the closely related genes
strongly suggests that the instance of true chimeric unigenes is very low. Thus it seems that
loci whose shared sequence is less than the read length are resolved accurately while traversing
the graph with reads, and loci whose shared sequence is greater than the read length seem to
resolve with only a single accurate unigene (one of the pair), not a chimera.

We next examined the global occurrence of Type II errors and subdivided Type II errors
into 5 cases (S1 Fig). In our analysis Type II Case I represents a special case that was most reli-
able in identifying chimeric unigenes compared to cases II-V. In Case I, the matching regions
(e.g. two distinct loci) do not overlap, indicating a potential false join, whereas in cases II-V the
matching regions overlap, indicating ambiguity between two loci. We excluded Type II errors
reported for adjacent genes based upon a detailed analysis of Type II Case 1 errors in BR1
assemblies (See S2 File). We verified that adjacent genes were accurately co-assembled (one
unigene with 2 full length open reading frames (ORFs)) by aligning unigenes to the Arabidopsis
genome. All cases of Type II Case 1 error reported for adjacent genes in assemblies of BR1 were
simply co-linear or overlapping genes with excellent full-length alignments to the Arabidopsis
genome (S2 File). These are cases of co-assembly and do not represent assembly failure, but
rather limitations of the data (i.e. not strand specific) and the relative position and orientation
of genes in the genome. Furthermore, post processing will easily report two distinct open read-
ing frames (ORFs) for such co-assembled genes, therefore removing any ambiguity. Type II
Case 1 errors of non-adjacent genes were often ambiguous alignments to closely related or
duplicated genes (S2 File) and were not chimeric. In fact, unambiguous cases of chimeric uni-
genes were exceedingly rare, with a substantial portion of Type II Case 1 errors reported con-
sisting of what appear to be trans-spliced transcripts (S2 File).

The Type II error rates for post-processed assemblies of BR1 were all 0.0–0.07% except the
highly fragmented CLC-S assembly at 0.26% (S1 File, and S3 Table). The Trinity-S Type II
Case I error count was 4, the count for Mosaik-S was 3 and NGMO-S had only 1. The highest
number of Case 1 assembly errors in post-processed assemblies of BR1 was in CLC-S at 56, yet
this was still only 0.07% of all unigenes in the assembly. The proportion of Type II Case I errors
were consistently less than half of all Type II errors, with many much lower. This indicates a
rate of chimeric assembly that is very low across all assemblies and an order of magnitude
lower than a previous estimate[30]. Our annotation strategy relied on BLASTn alignments to
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TAIR10 cDNAs and the majority of Type II errors are likely due to ambiguous unigene align-
ments rather than erroneous assemblies (S2 File).

cDNA coverage statistics in de novo assemblies. The average sequencing read-level
cDNA coverage of the detected gene set in BR1 was 75.8%, while the average unigene-level
cDNA coverage of the Mosaik assembly of BR1 was 65.3%. While we estimated coverage of
cDNAs (mature mRNA transcripts) in an attempt to learn about the accuracy and efficiency
of reconstruction of the input RNAs, it is important to note that the coverage of the coding
sequence (CDS) in each transcript is very likely to be greater than, or equal to, the cDNA
(mature transcript) coverage. As expected, all primary and post-processed de novo assemblies
yielded poorer coverage statistics than the respective TAIR10 cDNA reference-based Mosaik
assembly. The differences among all de novo assemblies were not dramatic and illustrate a
subtle gradation in terms of completeness (S6 Fig). Inchworm-S and CLC-S had the best uni-
gene-level coverage statistics, yet were only slightly better in coverage than other assemblies
which still yielded many thousands of unigenes that, cumulatively, covered reference tran-
scripts>75%.

The complex assembly landscape
Integration of quality metrics. The beneficial effects of post-processing tools like those

integrated into Velvet-Oases, Trinity and SCERNA (Fig 2) are seen in all assembly metrics pre-
sented thus far. In Fig 3 we summarize the effect of SCERNA post-processing on the Mosaik
reference assembly and CLC, plus the effect of the Trinity pipeline on the intermediate output
generated with Inchworm. The direction of change varies for certain categories. For instance,
we expect that successful post-processing should reduce error rates and unigene numbers, but
increase length statistics. These changes would indicate error correction and consolidation of
information resulting in a smaller, more concise, lower error and more contiguous assembly. A
summary of the effect of post-processing on assemblies is presented in S1 File.

The Mosaik assembly is generated by aligning reads to the reference set of cDNAs, thus the
effect of post processing should be minimal because each unigene is reference checked during
assembly. Very complete yet highly fragmented assemblies like CLC should benefit greatly
from post-processing, while high performance transcriptome assemblers like those imple-
mented in the Trinity suite should show more modest gains during post-processing. The effect
on the Mosaik assembly is minimal with the exception that the Type II error rate is reduced to
0.025% and the number of genes missing from the assembly was slightly increased. The effect
on the CLC assembly was pronounced with substantial improvement of error rates, yet small
changes in length statistics and unigene count. The changes for the Trinity assembly from the
intermediate Inchworm output were more modest, and generally showed improvement in all
categories.

Visualizing the complex assembly landscape. Despite a rigorous examination of numer-
ous assembly quality metrics, none completely capture the key differences among the assem-
blies. Assemblers like CLC produce very comprehensive, yet highly fragmented transcriptome
assemblies. Others like Trinity produce concise assemblies by excluding portions of the tran-
scriptome that are difficult to resolve, as evidenced by the lower error rates and relatively
greater number of missing genes. It is easy to make comparisons and see the effect of post-pro-
cessing in individual categories, yet the fate of each gene needs to be considered to draw con-
clusions about transcriptome-wide assembler performance.

To track the fate of each gene in an assembly, we integrated our read mapping data
(sequenced fragments/basepair—SFB) and BLAST-based sequence identification (bit score/
basepair—BS) to reveal how the quality of de novo transcriptome assembly changes across the
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Fig 3. Post-processed assembly delta plot, showing the effect of post-processing in several assembly quality categories. The histogram shows the
magnitude (% change) and direction of change in each category for the Mosaik-S, CLC-S and Trinity-ICB assemblies of Illumina biological replicate 1. The
post processed values in each category are printed above the x axis for each assembly. A vertical line separates categories where an assembly improvement
would result in a decrease in the respective measure (“Expect Δ<0” categories, left of line) or an increase in the respective measure (“Expect Δ>0”
categories, right of line).

doi:10.1371/journal.pone.0146062.g003
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dynamic range of expression in the A. thaliana young leaf transcriptome. Our approach selects
a single unigene with the highest BLASTn alignment bit score to a given TAIR10 cDNA, nor-
malizes this score by cDNA length and then plots it against the normalized read depth (SFB).
The ideal BS (alignment bit score normalized for sequence length) is 2.0 for a perfectly matched
alignment. However, the BS for even a perfectly matched alignment may be slightly less than
2.0, due to variations in nucleotide base frequency, and thus the likelihood of transitions at a
given position[63]. For example, a unigene that aligns to a 1000 bp transcript with 2 BS and 0.2
SFB is represented in the assembly by a unigene identical to the reference, and 200 sequenced
fragments (pairs and/or orphans) map to the unigene. In this example, the average depth of
sequence is roughly 30x, though we caution against the use of “depth of sequence” as a descrip-
tor of transcriptome data sets, since read depth across genes and even across the length of indi-
vidual reference transcripts varies by orders of magnitude[64].

In Fig 4 the results of this integrated approach are presented for all post-processed assem-
blies of BR1. Lowly expressed genes are represented in all assemblies by low quality (i.e. incom-
plete) unigenes. The accumulation of reads results in a rapid increase in unigene quality from
0.05 to 0.1 SFB for the Mosaik-S assembly, indicating that for an average gene (1000 bp), 50
76x76 bp paired-end Illumina reads is a practical lower limit for full length and accurate refer-
ence-based assembly.

The read depth threshold for high quality unigenes is greater for de novo assembly. With the
exception of the NGMO-S assembly, the read use efficiency at lower sequencing depths was
more or less equivalent among assemblers, with a sequencing depth between 0.1 and 1 SFB rou-
tinely producing long and accurate unigenes (Fig 4). To further reveal read-use characteristics
of each assembly, a white trend line is plotted in each graph in Fig 4. This trend line shows the
normalized read depth inflection point at which an assembly accumulates more contiguous
and accurate unigenes. Except for NGMO-S, the trend of increasing quality as read depth
increases is highly similar, with the most dramatic differences seen above 10 SFB. This analysis
shows that most de novo assemblers rapidly accumulate long and accurate unigenes at 0.1–0.2
SFB, indicating that for an average 1,000 bp transcript, 100–200 reads (76x76 bp paired end) is
a practical lower limit for successful de novo assembly. Generally, for genes in the 2nd and 3rd

quartile of expression level, the assemblies are indistinguishable, yet the differences in the 1st,
and especially the 4th, quartile of expression level are dramatically different.

Surprisingly, increasing sequence depth does not result in high quality assembly for all
genes. This counterintuitive pattern is illustrated in Fig 4 as a persistence of lower quality uni-
genes at a normalized read depth above 0.1 SFB. The assemblies CLC-S, Oases-VO, Velvet-S,
SOAPdenovo-S and ABySS-S all fail to assemble highly expressed transcripts at >10 SFB
(>10,000 reads for 1,000 bp transcript), while more robust assemblers like Inchworm-S,
Trinity-ICB, CLCscaf-S, SOAPtrans-S, NG MO-S and NG IT-S continue to efficiently pro-
duce unigenes for highly expressed transcripts, though some of these are of lower quality.
This surprising pattern is also seen in primary assemblies (S3 File) and is not a result of post-
processing.

These results lead to the unexpected finding that the most highly expressed genes may be
entirely missing from some de novo assemblies (Velvet-S, Oases-VO, SOAPdenovo-S,
ABySS-S). In contrast the Inchworm-S, Trinity-ICB, CLCScaf-S, SOAPtrans-S, NG IT-S and
NGMO-S are resistant to assembly failure at high read depth. NGMO-S is inefficient, yet the
implementation of an iterative approach (NG IT-S, designed to control for extreme sequencing
depth) substantially improves assembly efficiency and contiguity (Fig 4). That the CLC-S
assembly failed at high sequencing depth, but still has an excellent RNA-Seq correlations and
high reference cDNA coverage suggests that many of the fragmented transcripts are from
highly expressed genes.
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To illustrate the challenge of distilling tremendous variation into concise unigenes repre-
senting a single locus, we aligned unigenes from 4 assemblies of BR1 (Inchworm, Trinity-ICB,
CLC and CLC-S) with the genomic DNA, cDNA and CDS of AT1G31330.1, which encodes
the highly expressed Photosystem I Subunit F (S7 Fig). In this extreme case the SFB of this
gene in BR1 was 128 (>121,000 reads). The Inchworm primary assembly produced two uni-
genes that matched the AT1G31330.1 cDNA. The post-processed Trinity-ICB assembly
produced a single perfect unigene that extended the 3’ and 5’UTR’s by 72 bp and 74 bp, respec-
tively. In contrast, the primary CLC assembly produced 623 distinct unigenes that aligned to
the AT1G31330.1 cDNA. Even after post-processing, the CLC-S assembly contained 96 uni-
genes that aligned to AT1G31330.1. The alignments of CLC unigenes reveal numerous single
base-pair and structural differences including a unigene that contains the intron (S7C and S7D
Fig). Depending upon research goals, it may be desirable to examine the numerous differences
for AT1G31330.1 displayed in CLC assemblies or, alternatively, extract a single perfect unigene
from another assembly for downstream analysis.

Is normalization a useful strategy to improve transcriptome assemblies?
Our analysis of the de novo assemblies reveals that the dynamic range of transcript abundance
is a primary hurdle to full-length and accurate transcript assembly, often resulting in missing

Fig 4. The quality of unigenes as a function of sequencing depth for Illumina biological replicate 1. The units for “Assembly Quality” are Normalized Bit
Score (BS, maximum of 2) and the units of “Sequence Depth” are Sequenced Fragments/bp (SFB). The number printed in the plot area is the number of
unigenes with normalized bit score above 1.5. A BS of 1.5 is an arbitrary threshold, yet represents long and accurate assemblies (75% length, high
accuracy), and is used to illustrate the difference in the high-density region seen in most plots near BS 1.75–2.

doi:10.1371/journal.pone.0146062.g004
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or fragmented transcripts. Normalization via Duplex Specific Nuclease (DSN) is designed to
enzymatically reduce the frequency of the most abundant transcripts and should directly
address assembly errors arising from extreme sequencing depth for highly expressed genes. An
important distinction between DSN normalization and e-normalization (like that offered by
Trinity[50]) is that the former reduces the abundance of highly expressed transcripts, while
the latter is a strategy to reduce memory requirements during graph construction by reducing
the frequency of highly abundant k-mers. Since the failure of de novo assemblies seems to be
driven by extreme read depth it is unlikely that e-normalization will impact Type II error rates.
Manual digital normalization, like that implemented in NG IT[4], improves assembly but is
extremely labor intensive and therefore not practical.

The normalized Illumina transcriptome provided the highest average coverage for any single
dataset (Fig 1), yet also lacked any reads for>2000 of our detected genes, more than double the
number missing from BR1 or BR2. This was unexpected since the process of normalization
removes highly abundant transcripts thus increasing the likelihood of detecting less abundant
ones. The result should be amore diverse library along with an increase in average transcript
coverage. We hypothesized that this apparent dichotomy was due to the removal of lowly
expressed genes along with highly expressed and very similar relatives; this could result from
sloppy complementary base-pairing leading to digestion by the DSN during normalization. To
test this we first identified two distinct gene sets, the Ultra-Conserved Orthologs[65] (UCOs,
http://compgenomics.ucdavis.edu/) and a subset of our EGPs, which we termed the Closely
Related Genes (CRGs—the 300 most closely related EGPs, Ks<0.2). We then correlated the
read counts from the normalized Illumina library and the average read counts from the com-
bined non-normalized Illumina libraries and highlighted the UCOs and CRGs (S8 Fig). The
results of this analysis do not support our hypothesis that the basis for aberrant removal of tran-
scripts is due to high sequence similarity of CRGs since read counts for CRGs, compared to the
UCOs and all other detected transcripts, are not substantially affected in the normalized library.
Despite the aberrant removal of transcripts from sequencing libraries, the increase in average
cDNA coverage (Fig 1) indicates that normalization was successful in its primary purpose.

Since we verified that normalization was successful in increasing cDNA coverage (Fig 1 and
S8 Fig), it stands to reason that de novo assembly of these data should improve since removal of
excess reads directly addresses assembly failure at very high levels of expression (SFB>10, Fig
4). The assembly of normalized read data does increase the number of full length and accurate
transcript assemblies (Figs 1 and 5, S8 Fig, S1 File) by ~15% in the Mosaik and Trinity assem-
blies, and by a larger margin in the CLC assembly (~25%). Similar gains were observed in
Oases and ABySS assemblies, though NGMO and SOAPdenovo assemblies were notably
poorer, due possibly to structural changes in the data following the removal of SMART adapter
sequences (see Materials and Methods). SOAPdenovo was the only assembler considered here
that required untrimmed input data, yet removal of the SMART adapters from was essential
and could not be avoided. The structural data requirement of SOAPdenovo is a drawback since
the user cannot tune the assembly based on quality trimming.

Evaluation of de novo assembly without a genome reference
We have evaluated de novo assemblies leveraging the Arabidopsis genome as ground truth and
provide the framework to evaluate assemblies and test the impact of various parameter adjust-
ments. However appealing de novo assembly is for organisms with a reference genome, the
power to study non-model organisms is undeniable. Using what we have learned about assem-
bly quality with the Arabidopsis genome, we can now select the most informative reference-
independent metrics for assessing assembly quality in organisms that lack a reference genome.
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Read Titration Analysis. In principle, if an assembly is accurate and complete (i.e., it rep-
resents all of the raw data), then a large proportion of those reads should map back to the
assembly. In addition to the proportion of reads that map back to an assembly, a measure of
completeness, in terms of number of genes detected, is necessary. To evaluate the degree of
read saturation present in a de novo assembly, we calculated gene accumulation curves for each
post-processed assembly of BR1 (Fig 6). This analysis calculates the rate of gene detection (esti-
mated using the number of unique unigenes observed) as a function of sampling effort (num-
ber of sequence reads). Analogous to the species accumulation curves used to estimate species

Fig 5. Normalization improves the recovery rate of highly expressed genes (compare to Fig 4). The units for “Assembly Quality” are Normalized Bit
Score (BS) and the units for “Sequence Depth” are Sequenced Fragments/bp (SFB). The number printed in the plot area is the number of unigenes with
normalized bit score above 1.5. A BS of 1.5 is an arbitrary threshold and is used to illustrate the differences in the high-density region seen in most plots near
BS 1.75–2.

doi:10.1371/journal.pone.0146062.g005
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richness in biodiversity inventories, similar approaches have been used to evaluate gene capture
in transcriptome studies for systems without a reference genome sequence[7, 34, 41, 46]. This
approach allows us to qualitatively and quantitatively assess whether we have sequenced to suf-
ficient depth to capture all of the genes present in a sample.

The read titration analysis shows that superior assemblies (like Trinity-ICB) are representa-
tive of the read data and capture a large amount of sample diversity before approaching satura-
tion, at which point a large proportion of the data are sampled (Fig 6). It is clear that NG IT-S,
NGMO-S, Inchworm-S, Trinity-ICB, CLCscaf-S and SOAPtrans-S reach saturation at ~110–
150% of the expected gene count, while CLC-S has more than 3 times the expected number
of sequences. We don’t expect a typical plant transcriptome to contain 60,000 genes, easily
excluding CLC-S since the proliferation of unique sub-sequences causes an inflation of “unique
tags” in the read titration analysis. Nor do we expect that only a small fraction of reads will

Fig 6. Read titration analysis. Reads were mapped to post-processed assemblies of biological replicate 1. The number of reads (X axis) that map to an
assembly are an indicator of assembly completeness and quality, while the incidence of new tags (Y axis) indicates how completely the assembly reflects the
diversity present in the read data.

doi:10.1371/journal.pone.0146062.g006
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map to a high quality de novo assembly, excluding Velvet-S, Oases-VO, ABySS-S and SOAPde-
novo-S since they garner a very small proportion of reads before reaching saturation. However
the plot of NG IT-S is quite similar to the Mosaik-S assembly, closer in fact than Inchworm-S,
which we know to be a better assembly. This is a reflection of the highly accurate but inefficient
and exclusive nature of NG IT-S assemblies. The unigenes that NG IT-S produces are very
accurate and tend to require more reads for assembly while at the same time excluding conflict
and many lowly expressed genes, effectively lowering the assembly diversity.

The relative sharpness of the inflection point informs assembly quality in that a more con-
tiguous assembly will have a sharper inflection point (e.g., Mosaik-S). This is due to rapid
detection of new unigenes in the assembly, that are quickly exhausted, and a switch to re-sam-
pling high coverage unigenes. In assemblies that fail to reconstruct highly expressed genes, like
Velvet-S, the inflection point is sharper due to the absence of highly expressed genes that low-
ers assembly unigene diversity. On the other end of the spectrum, CLC-S assemblies recon-
struct highly expressed genes as a fragmented collection of unigenes resulting in the more
gradual detection of unique, though highly expressed unigenes.

The results of this type of analysis will reveal which assemblies represent the read data well,
while at the same time providing a measure of assembly diversity. In theory, a good assembly
should produce a number of sequences that reflect the estimated transcript number. However,
the choice between leading assemblers is not clear, as in the case of NG IT-S, NGMO-S, Trin-
ity-ICB, Inchworm-S, CLCscaf-S and SOAPtrans-S. To make a more informed choice we
should not only estimate the number of expected sequences, but also look for specific genes
(e.g. broadly conserved genes) we expect to find.

Ultra Conserved Orthologs (UCOs) as a proxy for the whole transcriptome. Our read
level analyses suggest that UCOs are among the ~60% of genes expressed at moderate levels in
the A. thaliana young leaf transcriptome (S8 Fig). The presence of UCOs in a transcriptome is
an indicator of data completeness[41, 46]. Therefore, it follows that assembly of UCOs can be
an indicator of de novo assembly quality since moderately expressed genes with low sequence
similarity to other genes are likely to be assembled and represented by single high quality uni-
genes. The Mosaik-S assembly contained high quality unigenes (>BS1.5) for ~85% of UCOs
and the leading de novo assemblers, Inchworm-S, Trinity-ICB. CLC-scaf and SOAPtrans-S all
captured ~75% of UCOs with high quality unigenes (Fig 7). Combined with the read titration
analysis we can now exclude NG IT-S and NGMO-S since the exclusive and inefficient nature
of these assemblers results in an inferior complement of UCOs; NG IT-S lacks>100 UCOs
covered at>90% and ~45 UCOs covered at>99% compared to the leading assemblies, while
NGMO-S lacks even more. The results of these two genome reference-independent analyses
clearly identify Inchworm-S, Trinity-ICB, CLCscaf-S and SOAPtrans-S as the superior assem-
blies, which is concordant with our ranking based upon the 10th generation A. thaliana refer-
ence genome based analyses.

A practical data volume threshold for de novo transcriptome assembly
The SCERNA processed Inchworm assembly of both biological replicates (BR12) of A. thaliana
young leaf produced only marginally more (3.6%) unigenes above 1.5 BS than the assembly of
one biological replicate (BR1), despite doubling the amount of sequencing data (from 4.2 to 8.4
Gbp). This indicates that for a majority of A. thaliana transcripts, 4.2 Gbp is near or above the
threshold for successful assembly. Thus we subsampled BR1 to generate datasets of approxi-
mately 1, 2, 3 and 4 Gbp to explore the effect of sequencing depth on de novo transcriptome
assembly using Trinity. Our subsampling method generated consistent replicate subsamples
(n = 3) at ~1 Gbp that resulted in similar assembled transcript content (~95% of the detected
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transcripts shared) and a similar number of transcripts reconstructed at>1.5BS (5253±25 in
each replicate—Fig 8).

The number of transcripts with>1.5 BS assembled from datasets of 1 Gbp, 2 Gbp, 3 Gbp, 4
Gbp, and 8 Gbp was 5253.3 (average of three replicates), 7392, 8491, and 9147, and 9742,
respectively. The average number transcripts>1.5BS from BR1 and BR2 is 9,095, which is con-
cordant with the 4 Gbp subsampled assembly. The number of unigenes>1.5 BS increased by
6.6% when we doubled the data volume from 4.2 Gbp to 8.4 Gbp. These gains are also accom-
panied by an increase in transcripts with low BS values, indicating an increase in Type 1 errors.

Validation of de novo assembly in Rice
To evaluate leading assemblers and validate our assembly metrics in a more challenging plant
transcriptome (larger and more complex[66–68]), we retrieved publically available (from ftp://ftp.
ddbj.nig.ac.jp/) young leaf transcriptome data forOryza sativa spp. Japonica cv. Nipponbare[69]
that was structurally similar to our A. thaliana young leaf transcriptome data. A large proportion
(76.5%) of the raw reads mapped back to the Rice cDNAs. Our subsampled assembly analyses in
Arabidopsis predicted that the rice data set, which was 1.4 Gbp of quality filtered data, would be
sufficient to reconstruct a substantial fraction of the rice young leaf transcriptome, allowing us to
gauge the efficiency and accuracy of leading assemblers with select informative analyses.

Our rice assemblies showed patterns similar to the Arabidopsis assemblies (compare S9 Fig
with Fig 8). Consistent with our subsampled assemblies in Arabidopsis, the small rice dataset
was insufficient to reconstruct as much of the rice transcriptome as the full size (i.e. 4.2 Gbp)
Arabidopsis transcriptome data. The difference in the number of genes above 1.5BS in the ref-
erence-based assembly vs. the best de novo assembly for rice was 4,186. The same comparison
with the Arabidopsis transcriptome data revealed a smaller gap of 3,268 genes, but considering
the smaller and less complex nature of the Arabidopsis transcriptome, this is not surprising.
Importantly, the Type II error rates were low and only slightly higher (S3 Table) than those

Fig 7. Ultra-conserved orthologs (UCO) coverage in post-processed assemblies of BR1. The use of UCOs as a proxy for the transcriptome assembly
helps to identify leading assemblies when considered with the read titration curve analysis. When considered together, Trinity-ICB, which was the clear
leader in our reference-based analyses, is also selected as the leader by the reference-independentmetrics.

doi:10.1371/journal.pone.0146062.g007
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estimated in the assemblies of the A. thaliana young leaf transcriptome. Together, these analy-
ses indicate that the superior assemblers for Arabidopsis thaliana young leaf transcriptome also
perform well on the larger, more complex young leaf transcriptome of Oryza sativa.

Microarray and RNA-Seq analysis of the A. thaliana young leaf
transcriptome
We reasoned that we could improve the coefficient of gene expression betweenMicroarray and
RNA-Seq approaches by masking the RNA-Seq signal from all but microarray probe regions.

Fig 8. 4 Gbp is a practical target volume for de novo transcriptome assembly. Illumina biological replicate 1 was subsampled to produce datasets of 1,
2, 3, and 4 Gbp. Replicate subsamples at 1 Gbp (top row) show reproducible results. Increasing the data by 1 Gbp to 2, 3, and 4 show diminishing increases
in well assembled (>1.5BS) genes. The 4 Gbp subsampled assembly showed highly similar results to the biological replicate datasets. Doubling the data
volume (BR12) produced a small increase in well assembled genes (>1.5BS) accompanied by a small increase in Type I mis-assembly. This analysis
indicates 4 Gbp is a practical target data volume for de novo plant transcriptomes.

doi:10.1371/journal.pone.0146062.g008
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We improved the Pearson’s correlation coefficient (PCC) between classic RNA-Seq (reads
mapped to TAIR cDNAs) and the NimbleGen Multiplex Microarray from R2 = 0.817 (average
Log2 RPKM vs. average Log2 Array intensity) to R

2 = 0.853 (average Log2 reads/probe vs. average
Log2 Array intensity). These results are an improvement over previous studies[64, 70] and con-
sistent with Malone and Oliver[71], albeit with fewer RNA-Seq replicates. However, only ~2.5%
of the Illumina reads map to the array probe sequences, excluding a majority of the read data.

The PCC between experiments using TAIR10 cDNAs and the Mosaik-S assembly revealed
high similarity (R2 = 0.74) with the TAIR10 reference, which captures more reads (S10 Fig);
this is expected because the TAIR reference is more complete. We correlated read counts from
all de novo assemblies against a reference-based assembly of the same data (Table 3 and S1
File). The PCC between reads mapped to Inchworm-S vs. TAIR10 was good (R2 = 0.64), and
the PCC between reads mapped to the Mosaik-S and Inchworm-S assemblies was better at R2

= 0.86 (S10 Fig).
Classic RNA-Seq and the NimbleGen Microarray reported very different expression levels

for some genes. After verifying the probe sequences (checked against current annotations) and
excluding organellar genes, we used the correlation analysis to choose candidates for qRT-PCR
analysis. 12 genes (3 each in 4 categories of agreement and disagreement–S11 Fig) were chosen
for analysis by qRT-PCR. Gene expression estimates for the well-correlated candidates were
consistent across methods, especially within the dynamic range of the array (S12 Fig). Outside
of the dynamic range of the array, qRT-PCR and RNA-Seq agreed (S12 Fig). Alternatively, the
poorly correlated candidates were either cases of false positives on the array (2 of 3) or were
erroneous signals from poorly annotated genes. For detailed results of the follow-up analyses
on the 6 poorly correlated candidates, see S4 File.

Transcriptome evidence for new Arabidopsis genes
The A. thaliana de novo assemblies include unigenes that do not align with annotated A. thali-
ana cDNA sequences. To determine the origin of these putative transcripts we used MEGAN
[72] to classify these unigenes. A threshold alignment quality (bit score) of 125 was determined
by plotting the frequency of hits to plants vs. the frequency of non-assignment (S13 Fig). At
this threshold a substantial number of unigenes remain unassigned due to low quality align-
ments or low sequence complexity (S14 Fig). 357 unigenes from all post-processed assemblies
of BR1 had best hits to fungal genes (S14 Fig) indicating low levels of contamination in the
transcriptomes of the greenhouse-grown plants. The genus Arabidopsis was represented by 61
unigenes (collectively from all post-processed assemblies of BR1), which align to 20 unique
sequences in NCBI’s non-redundant protein sequences database (see S5 File). Of these 20,
none are represented by TAIR10 cDNAs. They are classified non-exclusively as follows: 14
align to the A. thaliana genome, 9 align to predicted (ab intio) A. thalianamRNA transcripts,
15 align to A. thaliana ESTs (two of 15 are not present in the A. thaliana genome sequence),
and one aligns to an Arabidopsis lyrata ribosomal protein (see S5 File). This collection of Ara-
bidopsis unigenes represents evidence for new genes with concordant evidence in A. thaliana
databases at NCBI[2]. If a more stringent alignment quality threshold is imposed, the remain-
ing unigenes are classified primarily as fungi or into the genus Arabidopsis (S15 Fig) and the
number of new genes detected falls by 50%.

Discussion

De novo assembler selection
The top performing assemblers were reassuringly good, and in many aspects competitive with
the A. thaliana reference based Mosaik assemblies. Two of the top performers, Trinity[50] and
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SOAPdenovo-trans[30, 52], are open source, while the third, CLCscaf[51], must be purchased,
yet it offers a more intuitive and user-friendly graphical user interface option combined with
many other useful features. Although we did not examine computational speed in this study,
no substantial differences were noticed between the top three performers (CLCscaf, Trinity
and SOAPtrans) with our dataset. The run time and memory footprint of some of the assem-
blers evaluated here have been explored [73–74], and the computational intensity can vary
greatly between data sets. A distinguishing feature of Trinity is the ability to estimate transcript
isoforms. However, given the structural limitations of the data (read length and library frag-
ment length<< transcript length) the estimation is really of alternative splice junctions
because short read data cannot capture complete transcript variants. Additionally, because
expressed gene sets from different organisms can vary substantially in their gene duplication,
isoform, heterozygosity, and repeat profiles, studies similar to this one in non-plants would
have merit, especially as it relates to evaluating assemblies in non-model systems.

Our extensive list of assembly quality metrics falls into two categories 1) reference-depen-
dent and 2) reference-independent. With a carefully controlled set of quality metrics, assembly
parameters, and evaluation criteria we were able to identify superior assemblies in our refer-
ence-dependent evaluations. Once we identified the superior assemblies, we were able to
choose reference-independent metrics that identified the same superior assemblies. Generally,
when the assemblers were ranked based on a single metric, a subtle gradation in performance
was revealed, rather than substantial differences. Using a wide range of assemblers, we observed
the surprising result that all but the best de novo transcriptome assemblers (Trinity, SOAP-
trans, CLCscaf) failed to assemble highly expressed genes. This observation indicates that both
insufficient and excessive sequencing depth can cause assembly failure.

Examination of each reference based quality metric invariably led to questions about the
useful combinations or relative power of each. To that end, we developed an analytical
approach that reports unigene quality as a function of sequencing depth for each Arabidopsis
thaliana transcript. Length statistics, which can inform unigene contiguity, are integrated with
the frequency of all other errors (e.g. mismatches, gaps, insertions/deletions, and Type I and II
errors). This method penalizes chimeric assemblies since the normalized score (BS) for an
alignment to a reference cDNA will be low; only the matching portions will align leaving the
remainder of the unigene unmatched. Finally, by considering the sequencing depth for each
unigene, we can visualize the spectrum of sequencing depths and correlate that with highly
accurate and contiguous unigenes to see how assembly quality changes over the dynamic range
of gene expression. This key analysis (Fig 4) allowed a definitive ranking of assemblers that we
recapitulated with reference-independent metrics (see Fig 9).

Comments on the top 3 assemblers: CLCscaf-S, Trinity-ICB and
SOAPtrans-S
Generally the statistics were fairly even among CLCscaf-S, Trinity-ICB and SOAPtrans-S
assemblies of in terms of assembly size (~13.5 Mbp), N50 (~1550) and unigene count
(~30,000). The differences among CLCscaf-S, Trinity-ICB and SOAPtrans-S were generally
minor but indicate that SOAPtrans-S was more exclusive yet more accurate, and CLCscaf-S
and Trinity-ICB more inclusive, possibly by more efficient resolution of variation in the tran-
scriptome read data. One assembly does get an honorable mention along with a note of caution
—NG IT-S. On the surface this assembly appeared to be very similar to our reference assembly
controls with Mosaik. Yet after looking beyond the good N50 statistics, high proportion of map-
pable reads and other signs of a superior assembly we dug deeper to find that the assembly
lacked many lowly expressed genes. It also lacked full-length unigenes (<99% cDNA coverage)
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for ~100 UCOs compared to the superior assemblies Together this indicates low read-use effi-
ciency in NG IT-S and highlight the pitfalls of focusing on too few metrics of assembly quality.
The substantial improvement over the NGMO-S assemblies resulted directly from manual
removal of reads for highly expressed genes, supporting our conclusion that excessive sequenc-
ing depth poses a primary hurdle to de novo assembly.

Importantly, these leading assemblers displayed low Type II error rates. Our results show
that previous estimates of error, specifically Type II error or instance of chimeric assemblies
[30, 75], were artificially high, often by an order of magnitude or more. Part of this is due to the
use of a loose definition of “chimera” in prior studies [29,70], but also to the use of a reference
genome from a different rice cultivar that contributed to an inaccurate count of chimeric uni-
genes[30]. In the present study, we reserve the term chimera for clear cases of erroneous assem-
bly of two distinct loci. We classified unigenes by aligning them to the Arabidopsis genome,
and found that a majority of Type II errors were simply cases of alignment ambiguity (matches
to multiple genome locations), where Xie et al.[30] broadly mis-classified these as chimeric. In
fact they represent limitations of annotating closely related genes by aligning unigenes to a ref-
erence sequence, especially one from a related organism.

Which genome reference-independentmetrics identify the leading
assemblers?
The reference-independent metrics that were most useful to identify superior assemblies were
selected based on reference-based evaluations. Only the combination of 1) a high proportion of
reads that map to an assembly 2) efficient recovery of conserved genes, 3) expected N50 length
statistics, and 4)more unigenes than expected transcripts, is indicative of superior state-of-the-
art assemblies (Fig 9).

Inconsistent with the expectation that superior assemblies produce the expected number of
unigenes, superior assemblies producedmore unigenes than the expected transcript number
(~18,000). This is due to Type I assembly errors for very lowly and very highly expressed genes,
both of which inflate the number of unigenes and depress N50 length statistics. Imposing length

Fig 9. Integration of our reference-independent metrics shows the top 3 are closest to Mosaik-S. Considering the N50 length, proportion of mappable
reads, and UCO recovery we recapitulate the reference-dependent ranking of de novo assemblers.

doi:10.1371/journal.pone.0146062.g009
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cutoffs to estimate N50 lengths reveals consistent and high values for leading assemblers. So,
paradoxically, superior assemblies have more unigenes than transcripts since the large dynamic
range of gene expression poses assembly challenges at both extremes. The reduction in Type I
error rates by adding more data (Trinity-ICB assemblies of BR1 vs BR12) was small and
accompanied by a concurrent increase in Type II error rates. This indicates that the 4.2 Gbp of
BR1 was sufficient to reconstruct a majority of the transcriptome and approaches a point of
diminishing returns as more data is collected.

An important reference-independent analysis was the read titration plot (see Fig 6). This
analysis displays two important metrics that are useful to identify superior de novo assemblies:
1) proportion of mappable reads, and 2) unigene count. More subtle qualitative information is
contained in the shape of the curve, with relative sharpness indicating relative assembly conti-
guity. The unigene number and proportion of mappable reads are easy to extract from other
analyses, yet the read titration plot allows the researcher to examine relative transcriptome
wide changes during iterations of assembly. For instance, the relative difference between two
assemblies may be unigene contiguity, rather than unigene number or mappable reads. In the
absence of excellent reference sequences to verify improved unigene contiguity, the read titra-
tion plot can reveal this improvement without a reference. It is important to note that absolute
contiguity is more difficult to estimate without reference sequences, especially when assembly
errors that reduce the effective transcriptome complexity can also indicate increased contiguity.
Therefore, careful consideration of this integrated analysis with the other metrics is critical.

A strategy that has been implemented to evaluate de novo assembly is the detection of
broadly expressed, highly conserved, single copy genes[7, 34, 41, 46]. A scan for genes expected
to be present in the transcriptome (i.e. ultra conserved orthologs—UCOs or conserved single
copy genes[58]) can inform assembly efficiency and completeness. In our comparison, a strong
indicator of assembly quality was UCO coverage which, in leading assemblies, tagged>70% of
the UCOs with unigenes covering>90% of the reference cDNA. As an exclusive indicator
UCO coverage was not ideal since assemblies that fail at extreme transcript abundance may
still assemble a large majority of UCOs since these genes tend to be moderately expressed (i.e.
see the assembly Oases-VO BR1 in Figs 7 and 9).

We did not attempt to generate a single score by integrating the above 4 metrics. Reduction
of these into a single dimension would require weighting of each metric. Because research goals
vary, and the ability to leverage de novo transcriptome assembly may depend on differential
weighting of these metrics, we instead have emphasized which aspects of assembly each metric
informs to promote goal-specific assembly optimization.

Are Strategies for Sequencing and Assembly Improvement Warranted?
We have shown that post-processing of assemblies is a critical step in generating superior
assemblies. The Trinity and Velvet-Oases pipelines, and our collection of modular post-pro-
cessing tools called SCERNA, improved de novo assemblies in key categories while minimizing
negative effects, such as increased Type II error rates (i.e. chimeric unigenes). SCERNA had
minimal effects on Mosaik assemblies indicating that high quality assemblies would not be
compromised. The most dramatic improvement in our analysis was the implementation of the
Iterative NextGENe assembly method[4] which brought NextGENe from a last place ranking
to fifth place. This approach was labor intensive, but directly addressed assembly failure for
highly expressed genes.

A common approach to improve the detection rate for lowly expressed transcripts is nor-
malization. Our comparison revealed that the normalized Illumina library had increased aver-
age transcript coverage (Fig 1, S6 Fig and S3 File) and assembly quality (Fig 5 and S3 File)
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reflecting that abundant transcripts were reduced in frequency. However, we also observed that
genes were erroneously removed during normalization. This, together with the cost of normali-
zation, the loss of gene expression information, and the high value of replicated RNA-Seq data
suggests the benefit of normalization is eclipsed by the benefits of deeper sampling and more
biological replicates. If the sequencing goal is to discover the largest possible number of genes
from an organism and obtain full length assemblies of even highly expressed genes[7], this is
one time when the addition of whole-organism (i.e. mixture of multiple tissue samples) nor-
malized libraries may provide a significant addition along with non-normalized libraries. This
approach adds a transcriptome in which highly expressed transcripts are reduced in coverage,
thereby increasing the chances for assembly of these transcripts.

It should be possible to avoid extremes of coverage by targeting specific tissues or “batch
assembling” data to avoid assembly failures at extreme sequencing depths, yet this would
require a novel meta-assembly strategy. Furthermore, in recent reports, dramatic gene expres-
sion differences were seen across fine tissue types (obtained by laser microdissection) in the
developing maize leaf[76], tomato fruit[9], and even parasitic plant haustoria[5]. These global
differences in gene expression likely extend to gene expression patterns of duplicated genes
and UCOs. Even though recently diverged genes (i.e. lower Ks) tend to be co-expressed while
older duplicate genes (greater Ks) have evolved divergent expression patterns[58–62], these
dramatic cell type differences may indicate a challenge to these observations. Also while UCOs
tend to be broadly and moderately expressed in whole organ samples like our young leaf sam-
ples, increased sampling granularity may influence the recovery of UCOs if their expression
profile is highly cell-specific.

Thus, in the absence of complementary data types, it may be possible to improve assembly
by isolating difficult-to-assemble transcripts by fine sampling. Similar to the addition of nor-
malized libraries to decrease reads for highly expressed genes, high sample granularity
increases the number transcripts with data amounts in the optimum range (SFB ~0.1–1.0) for
successful assembly. The loss of low abundance transcripts from a fine granularity approach
would be mitigated by assembly of all the data together; an approach that effectively increases
the coverage of low abundance transcripts. However, implementation of a multiple assembly
strategy creates the need for a meta-assembly approach to merge or cluster unigenes from the
same locus, or a selection strategy to supplement the easily assembled transcripts with those
that are more challenging to assemble.

From strictly a cost-per-base perspective, Illumina sequencing is attractive. However, longer
read technologies (e.g. Sanger, 454, PacBio, Oxford Nanopore) are attractive since they provide
complementary data structure to capture entire transcripts. Recent reports have shown that
excellent de novo assemblies can be generated by leveraging existing sequence resources with
fresh SGS data, like those that exist for wheat[77] and tomato[9]. However, we recognize many
plant genomes are first examined by a pilot Illumina transcriptome (e.g. NSF’s AToL initiative
[78] and the 1000 Plants initiative[79]), thus researchers must rely solely on the SGS data cre-
ated in these studies.

Important situations where long reads should improve the assembly quality are in the
assembly of highly expressed genes and closely related genes (CRGs). We examined CLC
assemblies of a combination of 454 and Illumina (S1 File) to see if structurally different data
improved assembly. Compared to a CLC assembly of Illumina-only, assembly metrics were
nominally improved; a similar improvement was achieved by implementing the overlap layout
assembler CAP3 with only Illumina data. Importantly, our hybrid assemblies were inferior to
the leading Illumina-only assemblies, which include CLCscaf-S. Surprisingly, the de novo
assemblies generally outperformed the Arabidopsis genome based assemblies (using Mosaik)
by reconstructing a greater proportion of high quality (>1.5 BS) mates of CRGs.
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The global pattern of CRG pair expression was examined by Ks plot analysis (S3 Fig) reveal-
ing that most CRGs detected by read mapping (S3 Fig “Detected gene set”) were not sufficiently
expressed for assembly of both mates (S5 Fig). In the de novo assembly plots the abundance of
pairs with very low Ks (the negative exponential on the left side of the plot) likely results from
very similar subsequences or transcript isoforms. The plot of ABySS Multi-K-S (S3 Fig), the
largest and consequently the most redundant assembly, is an extreme example of this. The
post-processing tools in the Velvet-Oases and Trinity pipelines outperform SCERNA in this
regard, yet the assembly that was most improved by SCERNA (CLC) shows a plot which is
nearly identical to the reference based assembly. Since SCERNA was optimized for improving
CLC assemblies, which were the most complete but most fragmented assemblies, this result
suggests that post-processing may benefit from platform specific tuning. The Ks analysis is use-
ful as an indicator of relative assembly quality, but the variable detection rate of differentially
expressed genes imposes limitations for using the Ks plot as an indicator of absolute quality.
Indeed, a meta-assembly strategy where sufficiently diverse transcriptomes are sampled to cap-
ture virtually all transcripts may enhance the utility of this type of analysis.

Assembly validation inOryza sativa
Arabidopsis thaliana is an ideal system for our in depth de novo transcriptome assembly evalu-
ation. However, in the universe of plant transcriptomes it poses fewer challenges than some
since the Arabidopsis transcriptome is relatively small and low complexity. Notably, the Type
II error rates were only slightly higher in the rice assemblies compared to the Arabidopsis
assemblies. Curiously the genome reference-based Mosaik returned ~5x more unigenes with
Type II errors. This may be due to the inability to align reads unambiguously to closely related
genes or may result from the relatively poorer 7th generation rice genome annotation compared
to the 10th generation Arabidopsis thaliana genome. Overall, these select analyses in rice show
that leading assemblers have similar efficiency and fidelity when used for the more complex
rice transcriptome.

De novo RNA-Seq
RNA-Seq has emerged as a powerful tool for gene expression analysis, yet the availability of a
high quality read mapping reference is essential. We have shown that by masking the signal for
RNA-Seq to only the cDNA probe binding regions the two methods of expression analysis yield
strongly comparable results providing a stronger link to legacy gene expression data. Addition-
ally, we have shown that high quality de novo assemblies can serve as an effective reference for
RNA-Seq. For de novo RNA-Seq, Trinity offers a balance of completeness, contiguity, and accu-
racy with the exclusive feature of inferring cluster variants (i.e. transcript isoforms).

Our follow-up analysis of the 12 candidates (S11 and S12 Figs and S4 File) revealed that in
each case when microarray and RNA-seq values disagreed, the RNA-Seq values were concor-
dant with qPCR, indicating microarray errors. This analysis reveals that a potentially useful
way to test the accuracy of genome annotations, as well as the probe set on an array, is to corre-
late the analog array probe signal with the digital signal from RNA-Seq masked for all but the
probe sequences. Even though our sample size was small, we were able to identify problematic
probe sequences and identify potential annotation errors in the best plant genome.

Conclusion
de novo assembly of the Arabidopsis thaliana young leaf transcriptome has shown that, com-
pared to a reference guided assembly, reconstruction of the transcriptome is reassuringly good.
The leading assemblies were Trinity-ICB (and the highly similar Inchworm-S), CLCscaf-S and
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SOAPtrans-S and generally the unigenes produced by each were highly accurate while assem-
bly errors were largely restricted to fragmentation and non-assembly. The reference based tran-
scriptome assembly metrics revealed that a large dynamic range of expression poses assembly
challenges at both extremes. Superior assemblies accurately reconstruct transcripts efficiently
at low transcript coverage depth and continue to generate accurate assemblies at high coverage
depth. Paradoxically, the superior state-of-the-art assemblies routinely produced more uni-
genes than expected transcripts due to assembly failure at both extremes of expression. Type I
error rates, which are due to insufficient coverage of lowly expressed genes and, presumably, to
conflict and error in extreme coverage depths, are a dominant form of assembly error. The
rates of all other types of error, including chimeras, were low. The reference-independent met-
rics we examined, when considered together, can inform absolute assembly quality. Existing
prior knowledge about the characteristics of a given transcriptome, e.g. gene number, are
important to assessing assembly quality and each plant transcriptome has unique differences.
Also, highly tissue specific sampling will influence the transcriptome that is captured compared
to a tissue pool that consists of more cell types. The characteristics of a superior transcriptome
assembly include: 1) a high proportion of mappable reads (e.g.>65%), 2) unigenes that num-
ber roughly�150% of the expected transcript count, 3) expected N50 (e.g. 1200), and 4) high
recovery of Ultra Conserved Orthologs. Only this combination of reference-independent met-
rics was useful to identify superior assemblies.

The minimum coverage required for successful assembly is notoriously hard to estimate
since transcript abundance spans several orders of magnitude. Indeed, a minimum depth for
assembly of highly expressed genes is easy to reach in a very modest (i.e. 500 Mbp) dataset
while the required depth of coverage for successful assembly of lowly expressed genes may be
practically unreachable. Our analyses suggest that 4–5 Gbp is a good minimum target for a rep-
resentative plant transcriptome, since substantial gains are made at 1 Gbp increments from
1–4 Gbp, but beyond that (i.e. ~8 Gbp in BR12) the returns diminish in terms of yield of addi-
tional transcripts, though more data may be required for larger transcriptomes, as seen in rice.
It is very important to note that more data can simultaneously improve the assembly of lowly
expressed genes while increasing the frequency of mis-assembly of highly expressed genes. The
intractiblity of sequencing each transcript in the sweet spot may require custom digital normal-
ization schemes combined with meta-assembly of tissue specific data, or “batch assembly” of
transcriptome data. Such an analytical strategy, in combination with effective use of 3rd genera-
tion sequencing technologies, could address the remaining weaknesses of state-of-the art de
novo assemblers in a world with exponentially growing transcriptome data.

Materials and Methods

Arabidopsis growth conditions
Arabidopsis thaliana Col-0 was grown in the Penn State Biology department greenhouse
(http://www.bio.psu.edu/general/greenhouse). Seeds were not stratified and sown in a lawn at a
density of approximately two seeds/cm2. The plants were grown for 21–28 days in Metro-mix
360™ (SunGro) in late September through early October. Hundreds of young leaves ranging
from 7–12 mm in length were harvested at the petiole-blade junction with fine forceps and
flash frozen in liquid N2. Tissue from two biological replicates (each sampled from four trays),
grown tandem under similar conditions, was harvested and then stored at -80°C.

Isolation of total RNA
Frozen leaf tissues were macerated in the presence of liquid N2 in an RNase free, pre-chilled
mortar and pestle. Tissue was processed in ~200 mg portions using the RNAqueous™Midi
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large scale phenol-free total RNA isolation kit (Ambion) according to the manufacturer’s
instructions with the following exceptions: 1) lysis buffer solution was made fresh for each iso-
lation, 2) Plant RNA Isolation Aid (Ambion) was added to each lysis buffer prep in a 1:8 ratio
by volume. Total RNA was assessed on the Agilent Bioanalyzer using the RNA 6000 Nano kit
(Agilent) with the Plant Total RNA assay. High quality total RNA samples (28s/18s ratio�1.7;
RIN�8; A260/A280:�1.8) from individual biological replicates were pooled. Biological repli-
cates were never mixed except prior to normalized library construction.

RNA precipitation and concentration
To further purify and concentrate RNA samples they were divided into ~100 μg portions and
were precipitated by adding 0.1 volumes RNase-free 3M NaOAc pH 5.2, and three volumes
100% reagent grade Ethanol and incubated at -80°C overnight. Precipitated total RNA was col-
lected by centrifugation at 14000 x G at 4°C for one hour and the supernatant was discarded.
The resulting pellet was washed twice with ice-cold 100% ethanol with a five minutes spin at
14000 x G following each wash and the supernatant was discarded each time. The pellet was
allowed to air dry for 60 seconds and was resuspended in 100 μL RNase free water. Multiple
precipitated samples from each biological replicate were pooled by replicate and mixed thor-
oughly before being stored at -80°C.

DNase treatment
Total RNA was treated with 2 U amplification grade DNase (Invitrogen) in 100 μg aliquots in a
total volume of 100 μL with a final buffer concentration of 1x and 40 U of RNase OUT™ (Invi-
trogen) at 25°C for 30 min. RNA was isolated from the reaction using an RNeasy™ (Qiagen)
mini kit following the manufacturer’s instructions, with the following exceptions: 1) 350 μL of
buffer RLT was added directly to the DNase reaction, 2) RNA elution was performed in two
steps using 30 μL of RNase free water each time. Total RNA was re-assessed on the Agilent
Bioanalyzer using the RNA 6000 Nano kit (Agilent) with the Plant Total RNA assay following
DNase treatment.

Paired-end mRNA-Seq library construction
Arabidopsis thaliana total RNA was assessed on an Agilent Bioanalyzer using the RNA 6000
Nano Kit (Agilent) with the Plant Total RNA Nano assay. Only high quality (28s/18s
ratio:�1.7; RIN�8; A260 /A280:�1.8) RNA was used to prepare Illumina Paired End mRNA
libraries according to the mRNA-Seq Sample Prep Guide (Illumina, 1004898 Rev. D) following
the manufacturer’s instructions. The Illumina RNA-Seq libraries were assessed on the Agilent
Bioanalyzer using the DNA 1000 kit (Agilent) with the DNA 1000 assay.

Paired-end sequencing on the Illumina Genome Analyzer IIx
Sequencing of the Illumina PE mRNA-Seq libraries was done in the McCombie lab at the Cold
Spring Harbor Laboratory, Cold Spring Harbor, NY USA. Each non-normalized library was
sequenced in one lane following a paired-end (76x76 bp) sequencing cycle protocol. Data are
publicly available with accession number SRP065775.

Normalized Illumina paired-end mRNA-Seq library construction
20ug of high quality (28s/18s ratio:�1.7; RIN�8; A260/A280:�1.8), DNase treated RNA from
each biological replicate was thoroughly mixed. Pooled samples were provided to Chris Pires at
the University of Missouri, Columbia for cDNA synthesis (Evrogen Mint dscDNA synthesis
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kit), normalization (Evrogen Trimmer Kit cDNA normalization kit) and sequencing on a sin-
gle lane following a paired-end (120x120 bp) sequencing cycle protocol and is publicly avail-
able (accession number SRP065775).

Poly-A RNA enrichment for 454 sequencing
RNA samples were enriched for Poly-A RNA using the Poly(A) Purist™mRNA purification kit
(Ambion) according to the manufacturer’s instructions. Poly-A enriched RNA was assessed on
the Agilent Bioanalyzer using the RNA 6000 Nano kit (Agilent) with the mRNA assay.

cDNA synthesis for 454 sequencing
A separate cDNA synthesis step was used for libraries prepared for 454 sequencing and for
rtPCR. cDNA was synthesized using the JGI cDNA synthesis protocol version 1.0 (http://my.
jgi.doe.gov/general/index.html) with the following modifications: 1) multiple reactions were
pooled for phenol:chloroform extractions, 2) an additional chloroform extraction following the
phenol:chloroform extraction at step 3 was done, 3) Roche 454 GS20 library preparation spe-
cific steps (4–7) were omitted. cDNA was evaluated on a Agilent Bioanalyzer using the DNA
7500 kit (Agilent) with the DNA 7500 assay. The expected, and observed, yield by mass of
cDNA from poly-A selected RNA was 50–75%.

Roche 454 FLX cDNA library construction
High-quality cDNA showing a mean length of ~1500 bp or greater was used to prepare
454 FLX libraries according to the Roche 454 GS DNA Library Preparation Kit (Roche,
04852265001) following the manufacturer’s instructions. The 454 GS FLX libraries were
assessed on the Agilent Bioanalyzer using the DNA 7500 kit (Agilent) with the DNA 7500
assay.

Roche 454 FLX sequencing
Sequencing of the Roche 454 FLX cDNA libraries was done at the Penn State Genomics Core
Facility—University Park, PA USA. Each library was sequenced on ¼ plate.

Eurofins MWGOperon 454 GS-FLX Titanium normalized transcriptome
20ug of high quality (28s/18s ratio:�1.7; RIN�8; A260/A280:�1.8), DNase treated RNA from
each biological replicate was thoroughly mixed and provided to Eurofins MWGOperon. RNA
quality was verified post shipment with the Shimadzu MultiNA microchip electrophoresis sys-
tem (Shimadzu). Poly-A RNA was prepared from the total RNA. First-strand cDNA synthesis
was primed with random hexamers. 454 adapters A and B were ligated to the 5' and 3' ends of
the double stranded cDNA (ds-cDNA). cDNA was amplified with PCR (16 cycles) using a
proof-reading enzyme. Normalization was carried out by one cycle of denaturation and reasso-
ciation of the cDNA. Reassociated ds-cDNA was separated from the remaining (normalized)
single-stranded cDNA (ss-cDNA) by passing the mixture over a hydroxylapatite column. After
hydroxylapatite chromatography, the ss-cDNA was amplified with 10 PCR cycles. Adapter
ligated ds-cDNA fragments were resolved on a preparative agarose gel. Fragments ranging
from 500–700 bp were excised and an aliquot of the size fractionated (~500–700 bp) cDNA
was analyzed by capillary electrophoresis with the Shimadzu MultiNA microchip electrophore-
sis system (Shimadzu). The library was sequenced on ½ plate.
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Micro Array hybridization and analysis
Arabidopsis thaliana total RNA was provided to the Penn State Genomics Core Facility—
University Park, PA. Total RNA samples were amplified and labeled for 2-color hybridization
and the labeled A. thaliana aRNA was hybridized to the Arabidopsis thaliana 4x72K Array
(A4511001-00-01) (protocol: http://www.huck.psu.edu/facilities/genomics-core-up/faq/
nimblegen-microarrays-procedure). Arrays were scanned using the MS 200 Microarray Scan-
ner (NimbleGen) and the MS 200 Data Collection Software (NimbleGen) according to the
NimbleGen Array User’s Guide (V3.2, NimbleGen). Background correction of the array
images was done using NimbleScan (NimbleGen) and RMA normalization was done on the
raw signal intensities from technical replicates using NimbleScan (NimbleGen). Log2 trans-
formed, background-corrected and normalized signal intensities were used as estimates of gene
expression in subsequent comparisons.

qRT-PCR candidate gene selection
Gene candidates were chosen based on a correlation of the NimbleGen Arabidopsis thaliana
4x72K Array intensities and the average PE Illumina mRNA-Seq read numbers mapped at
high stringency to NimbleGen array probe sequences (no mismatches and alignment with the
full probe 60mer). Well correlated examples (n = 3) that spanned the dynamic range of log
transformed reads counts from Illumina were chosen to corroborate the estimates of expres-
sion reported by the array and RNA-Seq. Features that extend beyond the range of the array
(n = 3) that should follow the well-correlated trend were chosen as the other 3 “well correlated”
candidates. Poorly correlated candidates (n = 6, with n = 3 high in array, low in RNA-Seq and
n = 3 vise versa) were also chosen for interrogation by qPCR. Candidates were selected by
choosing the most poorly correlated estimates of gene expression that met the following crite-
ria: 1) gene models were not obsolete in subsequent iterations of the Arabidopsis genome (then
current TAIR9), 2) complete probe set must match perfectly to the then current TAIR9 gene
model, 3) gene must be nuclear, protein-coding transcript, 4) candidate must fall within log2
array intensity of 4 to13, and 5) the then current TAIR9 annotation did not include known
splice variants.

qRT-PCR
We searched for candidates in each category (S11 Fig) that had verified (still accurate from
TAIR6 to TAIR9) probe sequences. The 6 candidates for the well-correlated group (black
arrows S11 Fig) were easily chosen and were the first 6 examined. Alternatively, the search for
candidates in the poorly correlated group (red arrows S11 Fig) extended to ~30 candidates
before any were chosen due to updated or obsolete annotations, and each of these had only 2
probes compared to 3 for the well-correlated gene set. Arabidopsis thaliana total RNA was pro-
vided to the Penn State Genomics Core Facility—University Park, PA. Primers and probes
for the 12 candidates were designed using Primer Express (v2.0, Applied Biosystems). For
qRT-PCR analysis high quality, DNase treated RNA was reverse-transcribed with the High
Capacity cDNA Reverse Transcription kit (Applied Biosystems) following the manufacturer’s
instructions. Relative quantification by real-time PCR was determined by adding 10 or 20 ng of
cDNA to 2X TaqMan Universal PCRMaster Mix (Applied Biosystems) in a volume of 20 μLs.
Primers were added at a concentration of 400nM and the TaqMan probe, labeled with a 5'
FAM and a 3' Black Hole Quencher (Biosearch Tech, Novato, CA), at 200nM. The amplifica-
tion protocol consisted of 10 min at 95°C, followed by 40 cycles of 15 sec at 95°C and one min
at 60°C in the 7300 Real-Time PCR System (Foster City CA).
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qPCR data analysis
Average crossing point (Ct) values for each gene and PCR efficiency, calculated by E = 10(-1/slope),
[80] was used in the Ect/Ect calculation [81] to determine the transcript abundance relative to the
reference gene AtActin (AT3G18780) in both biological replicates. We made two key assump-
tions for this analysis, 1) the cDNA population accurately represents the poly-A RNA population
from which it was made (standard assumptions for micro-array and RNA-Seq) and 2) for the
TaqMan assay the number of amplicons at the crossing point is the same for each reaction.

Informatics
Sequencing. The Arabidopsis thaliana young leaf transcriptome normalized and non-nor-

malized libraries were sequenced with both Roche’s 454 GS-FLX and Illumina’s GAIIx. 454
sequence fragments were clipped with version 0.2.8 of sff_extract[82] at the recommended
clipping points by the 454 software. Low-quality bases (<Q20) were trimmed from the ends of
454 single-end and Illumina paired-end reads using the quality_trim program of CLC Assem-
bly Cell version 3.2[51] requiring additionally that the remaining read must be>50% original
length with each remaining base having>Q20. SnoWhite[83] (version 1.1.4), a sequence-
cleaning pipeline, was used to remove normalization adapter (sub-)sequences from the nor-
malized read files. SnoWhite was originally implemented for 454 data, and requires sequences
in fasta format (and optionally base qualities in base-quality fasta format). Since Illumina
sequences are typically provided in fastq format, Biopython[84] was used to convert the Illu-
mina-fastq to standard-fastq, and then the resultant standard-fastq to fasta and base-quality
fasta format before clipping adapters. After running Snowhite the read files were converted
back to fastq format using Biopython, paired-end read files were reconstructed and single-end
read files were written (for orphaned reads) using a custom script.

Reference Read Mapping. A reference-based assembly was created for detailed compari-
son with the de novo assemblies (below). All reads were aligned to TAIR10[85] cDNA repre-
sentative gene models (sequences for the longest CDS at each locus) using version 1.1.0014 of
Mosaik Assembler (http://bioinformatics.bc.edu/marthlab/Mosaik) with the recommended
aligner settings. Mosaik alignments were converted to bam format and CoverageBed program
in Bedtools[86] was used to compute the depth and breadth of coverage, and to determine the
number of TAIR10 gene sequences tagged. 25,512 TAIR10 gene models were tagged by at least
one read in any of the data sets and are here after referred to as the “detected gene set” in Arabi-
dopsis thaliana young leaf.

Transcriptome assembly. The trimming of low-quality bases and adapter clipping can
compound insert size estimation by read mapping. To estimate insert sizes required for subse-
quent analysis steps, test assemblies were run for all three Illumina paired-end reads libraries
BR1, BR2 and NORM using CLC Assembly Cell (Version 3.2). Then all paired reads were
uniquely mapped to each lllumina library and its respective large contigs (�600 bp) using ver-
sion 0.12.7 of Bowtie[87]. This enabled estimation of the average insert size for each library
using custom PERL script “get_insert_sizes_from_bowtie_aln.pl” (see S6 File). The insert sizes
for biological replicate one (BR1), biological replicate two (BR2), and normalized (NORM)
libraries were 134 bases (sd = 15.06), 140 bases (sd = 18.15), and 217 bases (sd = 19.45)
respectively.

Reference assembly. Mosaik Assembler was used to resolve paired-end read alignments,
filter out duplicate alignments, and assemble reference sequences from previously created
Mosaik reference read alignments. Reference scaffolds were created from all Mosaik reference
assembly ACE files for each assembly by clipping flanking reference bases of the consensus
sequence, substituting intervening reference bases of the consensus sequence with nucleotide
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ambiguity code N, and filtering out sequences shorter 100 bases (not including scaffolding Ns).
Reference based primary assembly statistics are shown in S1 File.

De novo assembly. The following de novo assembly tools were used and evaluated in this
study: ABySS[55] (version 1.3.0), CLC Assembly Cell[51] (version 3.2) and CLC Assembly Cell
with Scaffolding (version 4.0.6 beta), Oases[18] (version 0.1.22) with Velvet[53] (version
1.1.03), SOAPdenovo[52] (version 1.04) and SOAPdenovo-trans[30] (version1.01), Trinity
[50] (release 03122011, includes Inchworm; release 04132014 for subsampled assemblies of
Arabidopsis and assemblies of Oryza), and NextGENe[88] (version 2.17). de novo assemblies
(see S2 Table) were performed with default settings whenever possible except for the minimum
contig/scaffold cutoff of 100 bases, k-value of 31 (except for the Trinity pipeline which is only
compatible with 25-mers), and scaffolding turned on whenever applicable. ABySS, Oases (Vel-
vet), SOAPdenovo, SOAPdenovo-trans and CLC Assembly Cell + Scaffolding produced scaf-
folds, while CLC Assembly Cell and Trinity (Inchworm) produced contigs. All assemblies were
performed using trimmed reads except for SOAPdenovo non-normalized assemblies, which
became more fragmented as result of trimming. Trimmed normalized reads were used in
SOAPdenovo assembly because the untrimmed normalized reads were contaminated with
adapter (sub-)sequences. To investigate the effect of a mixture of 454 and Illumina reads a
454-Illumina-hybrid assembly was performed using reads from BR1 with CLC Assembly Cell.
For the NextGENe Maximum Overlap (NGMO) assemblies we used NextGENe to quality fil-
ter the raw fastq data to remove reads with a median quality score of less than 22, trim reads at
positions that had 3 consecutive bases with a quality score of less than 20, and remove any
trimmed reads with a total length less than 40 bp. The quality-filtered data was assembled de
novo using the Maximum Overlap assembler in NextGENe. The NextGENe Interative assem-
blies (NG IT) were done as described in Wickett et al. 2011[4]. We attempted to improve the
BR1 hybrid 454 + Illumina CLC assembly using the overlap consensus assembler CAP3[89],
using a minimum overlap length of 30 (k-value -1) and at least 97% identity, to merge contigs
with significant overlap that had not been assembled into contiguous sequences (due either to
single base mismatches in the reads or path ambiguity in the graph). Illumina BR1 reads were
also assembled over a range of k-values (25–74) using ABySS (ABySS Multi-K) and these
assemblies were merged to remove redundancy as described in Robertson G, Schein J, et al.
2010[90].

Subsampled assemblies. We generated 3 replicate subsamples of 1 Gbp using the Sub-
SampleFastq program (https://github.com/dylanstorey/SubSampleFastq) to test if randomly
subsampled sets of the same size would provide consistent assembly metrics. After validating
the subsampling scheme, we randomly generated subsamples of approximately 2 Gbp, 3 Gbp
and 4 Gbp of paired-end fastq reads from BR1 to explore the effect of sequencing depth on de
novo transcriptome assembly.

Assembly post-processing. We developed a suite of post-processing tools we call
SCERNA (Scaffolding Clustering Error correction of RNA-Seq data–S6 File). These assembly
post-processing tools address specific aspects of an assembly with the goal of generating high
confidence sequences for downstream analysis. de novo assemblies had different entry points
into the post-processing pipeline depending upon the output of each assembler (Fig 2). Paired-
end information of Illumina reads was used to scaffold and extend CLC Assembly Cell and
NextGENe contigs with SSPACE[91] (version 1.0) because assembly algorithms of these two
assemblers do not have built-in scaffolding functions and thus tend to produce more frag-
mented sequences (CLC now has a built in Scaffolding feature—designated herein CLCscaf see
S2 Table). A minimum of 5 links (read pairs) were required to join two contigs into a scaffold
and at least 30 bases of overlap (k-value -1) and a minimum of 20 reads were required for con-
tig extension. Similar parameters were set for the assembly programs with built-in scaffolding
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capabilities, whenever possible. In order to bridge some of the gaps introduced in transcripts
during scaffolding, paired-end reads were utilized with SOAPdenovo’s GapCloser program
(overlap length set at 30 bases (k-value -1)) to either close or reduce the size of gap opening in
all de novo assemblies except for the gapless transcripts produced by Trinity. ESTScan 2.0[92]
using HMMmodels built with A. thaliana was used to identify translatable sequences.
USEARCH[93] (version 4.0) was used to de-replicate (create non-redundant) de novo assem-
blies before the terminal clustering steps of SCERNA. Using UCLUST, a global alignment-clus-
tering algorithm of USEARCH, scaffolds (or contigs where applicable) were clustered at 97%
identity for each de novo assembly into non-redundant sets. The longest sequence in each clus-
ter was selected as the best representative for a given putative locus in the final post-processed
assembly. Additionally, the longest translatable sequences-per-cluster were selected from non-
redundant natively clustered Oases (Oases-VO) and Trinity (Trinity-ICB) assemblies for com-
parison with assemblies clustered with UCLUST.

Completeness of Coverage. A commonly used criterion to assess the optimality of a de
novo assembled transcriptome of species that has previously determined gene models is how
well it recapitulates the models[94]. Using BLASTn[95], with an e-value threshold of 1e-10,
each assembly was aligned (using cluster representatives) to the set of 25,512 detected genes as
determined by read mapping (described above). Only the most significant locus (least e-value)
for each assembled sequence was recorded (with the exception of alignments for Type II error
rate evaluation, where two most significant loci recorded). Using custom scripts the alignments
were parsed to compute the breadth of sequence coverage, mismatch and gap-opening rates,
Type I and Type II error rates across gene models[57]. For each reference gene model, the
breadth of sequence coverage was determined by computing the percentage of bases covered
by unigenes from each assembly. The mismatch and gap-opening rates for each assembly was
determined by computing the ratio of mismatches to total aligned bases and the ratio of gap-
openings to total aligned bases respectively.

Type I error estimation. Contigs corresponding to the same locus, but which fail to
assemble together were classified as Type I errors. We quantified these error rates in each
assembly by determining regions with no overlap (i.e. gap between scaffolds not spanned by
unigenes, Case I), insufficient overlap regions (overlap< k-value, Case II), and regions with
conflicting overlaps (�k-value—1, Case III) in BLASTn alignments of unigenes for each locus
as (see S2 Fig)

Type II error estimation. Mis-assemblies (Type II errors) in each assembly were quanti-
fied by determining the ratio of all ambiguously aligned sequences to all reference-aligned uni-
genes. We determined potential mis-assembled unigenes in the BLASTn alignments if, with at
least 99% sequence identity, different segments of an assembled sequence align to at least two
non-adjacent annotated gene loci (= “genes”) (Case I), an assembled sequence aligns equally to
two genes (Case II), an assembled sequence aligns to a gene model and its subsequence aligns
to a different gene (Case III), an assembled sequence whose alignments to two gene overlap
with more than 80% of the sequence length (Case IV), and an assembled sequence whose align-
ments to two genes overlap with at most 80% of the sequence length (Case V) as illustrated in
S2 Fig.

We verified that excluding adjacent genes was appropriate by manually examining all uni-
genes with Type II errors (hits to adjacent and non-adjacent loci) in the BR1 CLCscaf primary
assembly (See S2 File). With BLASTn we aligned each unigene to the Arabidopsis genomic
sequences to verify that adjacent genes were accurately co-assembled (i.e. 1 unigene with 2
intact, accurate, and correctly oriented ORFs). After excluding poor alignments (<90% iden-
tify,>1e-10 e-value) the extensive manual curation of these alignments revealed that, predomi-
nantly, Type II Case 1 errors identified chimeras, whereas Cases II-V did not (S2 File). Thus,
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using the manually curated learning data, we designed and ran a custom Perl script (S2 File) to
parse Arabidopsis genomic alignments of all Type II Case 1 BR1 post-processed unigenes to
identify chimeras. These results agreed very well (R2 = 0.87) with our original estimates of
Type II Case 1 errors. In fact, our algorithm to identify Type II errors reports an overestimate
of true chimeric unigenes.

Assembly Read Mapping Evaluation. The proportion of reads that can map back to
an assembly is a useful criterion for the quality assessment of a given de novo assembly. Bow-
tie was used to map Illumina paired-end reads back their respective assemblies retaining
only one best alignment for each read. The alignments were then parsed to determine the
number of reads that mapped to each assembled sequence, and subsequently used the read
mapping results for RNA-Seq expression analysis[64, 70] and generation of gene accumula-
tion curves[41].

Read count estimation. The number of reads that mapped to unigenes (scaffolds or con-
tigs) in an assembly were binned for sequences corresponding to a single locus based on
BLASTN results to TAIR10. The cumulative log-transformed read counts for each de novo
assembly and the reference-based assembly for that data set were correlated using the Spear-
man’s Rank

Read Titration Accumulation curves. To generate the gene accumulation curve for a
transcriptome assembly, reads were mapped back to the assembly using Bowtie[87] retaining
only one best alignment for each read as one would typically do in an RNA-Seq experiment.
The frequency distribution of mapped reads in the assembly was used (i.e. number of reads per
scaffold) to calculate the rate of new gene detection by randomly sampling reads without
replacement and recording the total number of scaffolds detected. Data points were recorded
every 1000 reads samples and this process continued until all reads mapping to the assembly
examined. The total number of mapped reads and assembled scaffolds was recorded as the
end point. This procedure was automated using a modification of the script published by Der
et al.[41].

Transcript length distribution and assembly size. The length distribution of assembled
transcripts and the total size of the assembly (Mbp) reconstructed in a de novo assembly is
another criterion that can be use to evaluate a de novo assembly. Short unigenes were filtered
from all assemblies in 100 bp intervals from 100 bp to 600 bp, and we then determined N50

length and captured mega base pairs at each interval for each assembly.
Ks distribution curves. Ks distribution curves were done as described in Jiao et al. 2011

[96].
Quality versus Depth plots. The BLASTn results (see above “Completeness of Cover-

age”) and read counts (see above “Assembly Read Mapping Evaluation”) were used to deter-
mine how well each detected transcript was reconstructed in each assembly. For a given locus,
the bit score of the best BLASTn alignment produced from a given assembly was normalized
by cDNA length producing the value for “BS” (normalized bit score). The expression signal for
each detected gene was determined by summing reads from all unigenes that mapped to that
locus. The read counts were then normalized by cDNA length to produce the value for “SFB”
(sequenced fragments per base pair). This approach excluded alignments of equal or lower
quality (�bit score) than the best alignment for each locus. In this way we simulate the ability
to identify a “best hit” when working without a genome reference and can report the ability of
each assembler to reconstruct each locus into a single, contiguous and error free unigene.
These two values were plotted against each other to show how each assembly accumulates
accurate and contiguous unigenes as a function of sequencing depth. The density scatter plots
were generated with custom R[97] scripts.
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AT1G31330.1 reference alignments and assembly. Using the “Completeness of Cover-
age” (see above) BLASTn results, Trinity and Trinity-S BR1 unigenes that had hits to
AT1G31330.1 were aligned using the “Multiple Align” function in Geneious5.6.4 [98] with the
“Geneious align” option selected. The more numerous collection of CLC and CLC-S BR1 uni-
genes that had hits to AT1G31330.1 were assembled using the genomic DNA sequence of
AT1G31330.1 as a reference. The coding and cDNA sequences were aligned to the assembly
using the “Multiple Align” function in Geneious with the “Consensus align” function.
Highlighting in each alignment shows agreements with the consensus sequence for each
alignment.

MEGAN analysis and alignment stringency cutoff. Unigenes that failed to be assigned to
a TAIR10 cDNA were queried against NCBI’s non redundant protein sequences database[2]
(NR) using BLASTx (e-value 1e-10, tabular output format). Taxon IDs from NCBI’s Taxo-
mony Browser[99] were appended to the tabular BLAST output with a custom Perl script
(v5.12.3). The tabular BLASTx output plus Taxon IDs was imported into MEGAN[72] (Min.
support = 1) with Min. Score values ranging from alignment bit scores of 25–250. The fre-
quency of plant (Viridiplantae with subcategories Arabidopsis and Other Green Plants) vs.
non-assignment was plotted to determine the optimum bit score cutoff that would retain the
greatest number of plant hits while maximizing the frequency of non-assignment. The bit
score thresholds of 125 and 175 were set as two useful thresholds for classification of de novo
assembled unigenes. 125 allows roughly double the number of plant hits as 175. The 175
threshold is stricter in that the frequency of non-assignment has flattened out while at the
same time excluding many alignments to plant sequences.

Supporting Information
S1 Fig. Summary diagram of assembly error types. Type I assembly reports cases of incom-
plete assemblies where a given transcript is not assembled into a single sequence (Case I = gap,
Case II = Insufficient overlap). Type I error can also consist of failure to bring contigs together
(Case III) with sufficient overlap, presumably due to conflict. Type II error reports cases where
portions of unigenes have good alignments to>1 TAIR10 cDNAs. Case I more strongly sug-
gests chimerism that Type II cases II-V. Cases II-V essentially report ambiguity in annotation.
(TIFF)

S2 Fig. As minimum sequence length cutoffs are imposed the assembly landscape becomes
more even. The effect on the N50 of assembled sequence length and N50 of Mbp of assembled
sequence resulting from sequence length cutoffs (imposed at 100–600 bp) for the post-pro-
cessed assemblies of Illumina biological replicate 1.
(TIFF)

S3 Fig. Closely related genes in the “detected gene set” are not efficiently recovered. Gene
pairs were identified by a reciprocal best BLASTn hit. Gene number is on the y axis, Ks value of
pairs in on the x axis. Equivalent best-fit model components are identified by similar color.
“TAIR10” pairs were identified from the comprehensive Arabidopsis cDNA collection. The
“Detected gene set” pairs were identified from the detected gene set (at lest one tag from any
sequencing data set). The remaining plots are of pairs identified from the indicated de novo
assembly with sequences less than 300 bp removed.
(TIFF)

S4 Fig. Gene pairs with higher Ks are less likely to be co-expressed. The frequency of pairs
with increasing Ks values were plotted revealing that pairs with lower Ks values were more
likely to have expression sufficient (BS>0.1) for assembly of both pairs. Yet pairs with higher
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Ks values were more likely to have one mate with reads insufficient for assembly.
(TIFF)

S5 Fig. The recovery of EGPs follows a pronounced hit/no hit pattern. Bit Score (BS) fre-
quency histogram and assembly summary table for Expressed Gene Pairs (EGPs). 473 gene
pairs present in the Ks plot of the “Detected gene sets” (see S3 Fig) were absent in the Ks plot of
the Mosaik assembly of BR1. For each assembly of BR1 the BS of each mate (946 genes) was
plotted. Below the plot is a summary table of the fate of the 473 gene pairs absent in the Mosaik
assembly that were present in the “Detected gene set” list.
(TIFF)

S6 Fig. The coverage of Arabidopsis cDNAs shows a subtle gradation of assembly complete-
ness. Unigenes were aligned to detected gene cDNAs to determine coverage, which was
expressed as the percent of cDNA bases covered by assembled sequence. The darkest bar is 0%
or “No Hit” and each progressively lighter bar is a bin containing genes covered in 10% incre-
ments, with the last two bars representing the number of genes covered at>90% and>99%,
respectively.
(TIFF)

S7 Fig. Alignment comparison of CLC and Trinity (Inchworm) unigenes representing the
AT1G31330.1 transcript. The Sequence order from the top in each alignment (A-D) is gDNA
(with a single intron—colored gray), cDNA, CDS and then unigene(s). A) Alignment of
AT1G31330 reference sequences and the Inchworm BR1 unigenes (x2) annotated as
AT1G31330. B) Alignment of AT1G31330 reference sequences and the Trinity-ICB BR1 uni-
gene sequence annotated as AT1G31330. C) Alignment of AT1G31330 reference sequences
and the CLC BR1 unigenes (x623) annotated as AT1G31330.D) Alignment of AT1G31330 ref-
erence sequences and the CLC-S BR1 unigenes (x96) annotated as AT1G31330. For this highly
expressed gene, Trinity is able to distill extensive variation into a single perfect unigene,
whereas subsequences with minor differences (often single nucleotides) are maintained as
numerous unigenes in the CLC primary and post-processed assemblies, including unigenes
that seem to contain introns (middle portion of C and D).
(TIFF)

S8 Fig. Normalization does not preferentially remove closely related gene pairs. Scatter plot
of read counts to the detected gene set of the Illumina biological replicates 1 and 2 and the nor-
malized Illumina data set. The log2 read counts +1 (to avoid taking the log of zero) for each
gene were calculated for the Illumina Normalized data set and the Combined (BR12) data set.
The “detected gene set” are plotted in gray. The Ultra Conserved Orthologs (UCO, http://
compgenomics.ucdavis.edu/.) are plotted in green. The closely related genes set (CRG) are
plotted in red.
(TIFF)

S9 Fig. The quality of unigenes as a function of sequencing depth for O. sativa. Publicly
available data was retrieved from NCBI’s Sequence Read Archive and assembled with leading
the reference based Mosaik and 3 leading de novo assemblers. While the data were insufficient
to reconstruct a majority of the rice young leaf transcriptome, the inflection point at which
higher quality transcripts accumulate is similar to that of the Arabidopsis BR1 dataset, indicat-
ing that the performance of leading assemblers is similar for rice and Arabidopsis.
(TIFF)

S10 Fig. Gene expression correlations. Array BR1 vBR2: correlation of background cor-
rected, normalized array intensities for biological replicates 1 and 2. Illumina BR1 v BR2:
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correlation of log2 read counts (reads +1) from the Illumina biological replicates 1 and 2
mapped to TAIR10 cDNAs. Array v Ilumina: correlation of log2 read counts (reads +1)
mapped at high stringency to the set of array probes and the average, background corrected,
normalized array intensities from biological replicates 1 and 2.Mosaik v Illumina: correlation
of average log2 read counts (reads +1) from biological replicates 1 and 2 mapped to the
Mosaik-S assembly and the detected gene set. Trinity-S v Illumina: correlation of average log2
read counts (reads +1) from biological replicates 1 and 2 mapped to the Trinity-S assembly and
the detected gene set. Inchworm-S v Mosaik-S: correlation of log2 read counts (reads +1) from
biological replicate 1 mapped to the Trinity-S assembly and the Mosaik-S assembly. Pearson’s
R is displayed in the upper left corner of each plot.
(TIFF)

S11 Fig. Summary of the 12 candidates chosen for a follow-up analysis by qRT-PCR. The
arrows on the plot show the candidates that were chosen for this analysis. The “Probe–cDNA
position” columns shows where on the reference cDNA the MicroArray probes hybridized.
Generally, the poorly correlated candidates also had a poorer probe set, which may also have
contributed to the aberrant signal on the array.
(TIFF)

S12 Fig. For well correlated genes all estimates of gene expression show excellent agree-
ment. (see S11 Fig) Fold difference in expression relative to AtActin (AT3G18780.1) was deter-
mined for candidates indicated. Those within the linear portion the Array vs. RNA-Seq
correlation with each method as appropriate (S11 Fig). Well correlated qRT-PCR candidates
are indicated solid black arrows (S11 Fig). qRT-PCR candidates which extend beyond the
range of the array but followed the linear trend are indicated by dashed black arrows (S11 Fig).
(TIFF)

S13 Fig. Threshold alignment score of 125 is sufficient to exclude erroneous hits and classi-
fying plant genes. The increase of non-assignment from alignment scores of 125 to 175 is min-
imal yet the instance of hits to plant genes is also decreased from alignment scores of 125 to
175. Depending on the desired outcome, alignment scores>125 can be used with confidence
to exclude erroneous classification while classifying more plant genes.
(TIFF)

S14 Fig. MEGAN classification of unigenes that do not align to Arabidopsis TAIR10
cDNAs. The classification was determined for unigenes that aligned to sequences in NR with a
bit score>125.
(TIFF)

S15 Fig. MEGAN classification of unigenes that do not align to Arabidopsis TAIR10
cDNAs. The classification was determined for unigenes that aligned to sequences in NR with a
bit score�175.
(TIFF)

S1 File. This file contains statistics for primary and post processed assemblies of BR1, BR2,
BR12, and NORM datasets. The change in each category is indicated in a shaded field with a
delta sign, i.e.Mosaik-S Δ.
(XLSX)

S2 File. This archive contains the results of the follow-up Type II error analysis. Only Type
II Case 1 errors reliably identified true chimeras (see Training_data_BR1_CLCscaf.xlsx and
S2_File_illustrations.pptx). Our follow-up analysis confirms that adjacent loci are co-
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assembled accurately and are not chimeric unigenes. Typically only a fraction of Type II Case 1
errors are true chimeras.
(ZIP)

S3 File. The quality of assembled sequences as a function of sequencing depth for all Illu-
mina assemblies. The units for “Assembly Quality” are Normalized Bit Score (BS, maximum
of 2) and the units of “Sequence Depth” are Sequenced Fragments/bp (SFB). The number
printed in the plot area is the number of assembled sequences with normalized Bit Score above
1.5. A BS of 1.5 is an arbitrary threshold, yet represents long and accurate assemblies, and is
used to illustrate the difference in the high density region seen in most plots near BS 1.75–2.
For instance, a transcript that was reconstructed to 75% of the reference cDNA length with no
errors would result in an alignment with a BS of 1.5. Since the rate of base call errors, alignment
gaps and Type II errors are low, the BS reports primarily alignment length.
(PPTX)

S4 File. The poorly correlated candidates (disagreement between the microarray and RNA--
Seq) were either cases of false positives on the array (2 of 3) or were erroneous signals from
poorly annotated genes. This file details additional efforts to understand the reasons for dis-
agreement between the two analyses. See also S10, S11 and S12 Figs.
(DOCX)

S5 File. This files contains a table that summarizes alignment statistics for putative "new"
Arabidopsis genes. The 5 columns contain database specific matches, though only the hits to
nr were used for MEGAN analysis. Hits in other databases are described as "concordant" evi-
dence in the manuscript text.
(XLSX)

S6 File. This archive contains the SCERNA protocol. Necessary scripts are included and
URLs for components (or alternatives) are also included. Instructions and scripts for generat-
ing plots (e.g. Fig 4) are also included.
(ZIP)

S1 Table. Sequencing and alignment statistics for the normalized and non-normalized
libraries used in this study. �Percentage of raw reads aligned.
(TIFF)

S2 Table. List of suffixes, abbreviations and gene lists.
(TIFF)
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